Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T21:23:43.941Z Has data issue: false hasContentIssue false

Arsenohopeite, a new zinc arsenate mineral from the Tsumeb mine, Namibia

Published online by Cambridge University Press:  05 July 2018

F. Neuhold*
Affiliation:
Institut fur Mineralogie und Kristallographie, Geozentrum, Universitat Wien, Althanstr. 14, A—1090 Vienna, Austria
U. Kolitsch
Affiliation:
Institut fur Mineralogie und Kristallographie, Geozentrum, Universitat Wien, Althanstr. 14, A—1090 Vienna, Austria Mineralogisch-Petrographische Abt., Naturhistorisches Museum, Burgring 7, A—1010 Vienna, Austria
H.-J. Bernhardt
Affiliation:
Ruhr-Universitat Bochum, Institut fur Geologie, Mineralogie und Geophysik, Zentrale Elektronen-Mikrosonde, N-Südstr., D—44801 Bochum, Germany
C. L. Lengauer
Affiliation:
Institut fur Mineralogie und Kristallographie, Geozentrum, Universitat Wien, Althanstr. 14, A—1090 Vienna, Austria

Abstract

Arsenohopeite, ideally Zn3(AsO4)2·4H2O, is the arsenate analogue of hopeite, Zn3(PO4)2·4H2O (it is isostructural with α-hopeite). It was found as a single colourless to blue crystalline grain from the Tsumeb mine, Namibia. The holotype specimen is ∼1 × 1 × 1 mm in size. Arsenohopeite is associated with tiny white fibres of an unidentified Zn- and As-bearing phase. It is orthorhombic, space group Pnma, with a = 10.804(2), b = 19.003(4), c = 5.112(1) Å, V = 1049.5(4) Å3 and Z = 4. Electron microprobe analysis yielded: ZnO 44.92, Fe2O3 0.92, MnO 0.51, MgO 0.20, CuO 0.02, As2O5 45.84 (wt.%). The empirical formula is (Zn2.80Fe0.06Mn0.04Mg0.03)Σ2.93(As1.01O4)2·4H2O, based on 12 oxygen atoms. Optically, the mineral is biaxial negative, with α = 1.598(2), β = 1.606(2), γ = 1.613(2) (white light) and 2Vcalc = 86°. It is not pleochroic or fluorescent. Arsenohopeite is translucent with a vitreous lustre. It is brittle, has an uneven fracture and (by analogy with hopeite) a cleavage that is perfect on {010}, good on {100} and poor on {001}. The calculated density is 3.420 g cm–3. The five strongest calculated powder diffraction lines are [d in Å (I)(hkl)]: 9.502 (100)(020), 2.926 (95)(241), 4.937 (50)(011), 4.110 (48)(230) and 3.567 (31)(240). The crystal structure of arsenohopeite has been solved by direct methods and refined in space group Pnma to R1 = 0.0353. Raman spectroscopy confirms the crystal-structure data and indicates the presence of weak hydrogen bonds.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antraptseva, N.M. and Shchegrov, L.N. (1983) Nature zinc-cobalt double trisubstituted orthophosphates. Zhurnal Neorganichesko. Khimii, 28, 28182823 Google Scholar
Antraptseva, N.M. and Shchegrov, L.N. (1984) Zinccobalt double orthophosphates as solid solutions based on orthorhombic hopeite. Doklady Akademii Nau. SSSR, 274, 13771381 Google Scholar
Blaß, G., Kruijen, F. and Seyb, R. (2009) Neues von der Tsumeb Mine. Mineralien-Welt, 20(5), 6065.Google Scholar
Chao, G.Y. (1969) Refinement of the crystal structure of parahopeite. Zeitschrift für Kristallographie, 130, 261266 CrossRefGoogle Scholar
Cesbron, F.P., Erd, R.C., Czamanski, G.K. and Vachey, H. (1977) Leiteite, a new mineral from Tsumeb. Mineralogical Record, 8(3), 9597.Google Scholar
Cooper, M.A., Abdu, Y., Ball, N., Back, M., Hawthorne, F.C. and Tait, K. (2011) Ianbruceite, IMA 2011-049. CNMNC Newsletter No. 10, October 2011, page 2612; Mineralogical Magazine, 75, 26012613 Google Scholar
Dunn, P.J. (1981) Sterlinghillite, a new hydrated manganese arsenate mineral from Ogdensburg, New Jersey. America. Mineralogist, 66, 182184 Google Scholar
Feng, P., Bu, X. and Stucky, G.D. (1997) A synthetic hydrated zinc arsenate constructed from tetrahedral, trigonal bipyramidal and octahedral zinc polyhedra: [Zn3(AsO4)2]3·4H2O. Act Crystallographica, C53, 9971000 Google Scholar
Fischer, R.X. and Tillmanns, E. (1988) The equivalent i s o t r o p i c d i s p l aceme n t f a c t o r . A c. Crystallographica, C44, 775776 Google Scholar
Gebhard, G. (1999) Tsumeb. A Unique Mineral Locality. GG Publishing, Grossenseifen, Germany, 328 pp.Google Scholar
Geier, B.H. and Weber, K. (1958) Reinerit, Zn3(AsO3)2, ein neues Mineral der Tsumeb Mine, Südwestafrika. Neues Jahrbuch für Mineralogie, Monatshefte, 1958, 160167 Google Scholar
Ghose, S., Sen Gupta, P.K. and Schlemper, E.O. (1987) Leiteite, ZnAs2O4: a novel type of tetrahedral layer structure with arsenite chains. America. Mineralogist, 72, 629632 Google Scholar
Harrison, W.T.A. (2010) b-Zn3(AsO3)2. Acta Crystallographica, C66, i64i66.Google Scholar
Haussühl, S., Middendorf, B. and Dö rffel, M. (1991) Structure and properties of hopeites (MgxZn1-x)3 (PO4)2·4(H2O). Journal of Solid State Chemistry, 93, 916 CrossRefGoogle Scholar
Hawthorne, F.C., Cooper, M.A., Abdu, Y.A., Ball, N.A., Back, M.E. and Tait, K.T. (2012) Davidlloydite, ideally Zn3(AsO4)2(H2O)4, a new arsenate mineral from the Tsumeb mine, Otjikoto (Oshikoto) region, Namibia: description and crystal structure. Mineralogical Magazine, 76, 4557.CrossRefGoogle Scholar
Herschke, L., Enkelmann, V., Lieberwirth, I. and Wegner, G. (2004) The role of hydrogen bonding in the crystal structures of zinc phosphate hydrates. Chemistry - A European Journal, 10, 27952803 CrossRefGoogle ScholarPubMed
Hill, R.J. and Jones, J.B. (1976) The crystal structure of hopeite. America. Mineralogist, 61, 987995 Google Scholar
Jensen, T.R., Norby, P., Hanson, J.C., Skou, E.M. and Stein, P.C. (1998) Hydrothermal synthesis, crystal structure and thermal transformation of a new zinc arsenate hydrate, Zn9(AsO4)6·4H2O. Journal of the Chemical Society, Dalto. Transactions, 1998, 527532 Google Scholar
Kawahara, A., Gan, K., Takahashi, M. and Takano, Y. (1972) Syntheses, thermal, and structural studies of hopeite. Scientific Papers of the College of General Education, University of Tokyo, 22, 137143.[from abstract].Google Scholar
Kawahara, A., Takano, Y. and Takahashi, M. (1973) The structure of hopeite. Mineralogica. Journal, 7, 289297 Google Scholar
Keller, P. (1984) Tsumeb/Namibia - eine der spektakulärsten Mineralfundstellen der Erde. Lapis, 9(7-8), 1362.Google Scholar
Keller, P., Hess, H. and Dunn, P.J. (1979a) Warikahnit, Zn3[(H2O)2|(AsO4)2], ein neues Mineral aus Tsumeb, Sü dwestafrika. Neues Jahrbuch für Mineralogie. Monatshefte, 1979, 389395 Google Scholar
Keller, P., Hess, H., Suesse, P., Schnorrer, G. and Dunn, P.J. (1979b) Koritnigit, Zn[H2O|HOAsO3], ein neues Mineral aus Tsumeb, Südwestafrika. Tschermaks Mineralogische und Petrographische Mitteilungen, 26, 5158.Google Scholar
Kumbasar, I. and Finney, J.J. (1968) The crystal structure of parahopeite. Mineralogica. Magazine, 36, 621624 Google Scholar
Lee, Y.H., Clegg, J.K., Lindoy, L.F., Lu, G.Q.M., Park, Y.C. and Kim, Y. (2008) Co3(PO4)2·4H2O. Acta Crystallographica, E64, i67i68.Google Scholar
Libowitzky, E. (1999) Correlation of O-H stretching frequencies and O-H···O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059 CrossRefGoogle Scholar
Liebau, F. (1962) U¨ ber die Struktur des Hopeits, Zn3(PO4)2·4H2O. Chemie de. Erde, 22, 430432 Google Scholar
Liebau, F. (1965) Zur Kristallstruktur des Hopeits, Zn3(PO4)2·4H2O. Act Crystallographica, 18, 352354 CrossRefGoogle Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship: part IV. The compatibility concept and its application. The Canadia. Mineralogist, 19, 441450 Google Scholar
Möhn, G., Frohwein, J. and Blab, G. (2009) Neue Mineralfunde von der Grube Friedrichssegen bei Bad Ems. Lapis, 34(5), 3540 58.Google Scholar
Nabar, M.A. and Patkar, V.S. (1974) Unit cell of trizinc diorthoarsenate tetrahydrate. Bulletin de la Société française de Minéralogie et d. Cristallographie, 97, 479480 Google Scholar
Nikonenko, E.A., Olikov, I.I., Marenkova, I.N., Margolin, L.N. and Reznikova, L.A. (1985) Thermal dehydration of hopeite. Zhurnal Neorganicheskoi Khimii, 30, 2529 [in Russian].Google Scholar
Otwinowski, Z., Borek, D., Majewski, W. and Minor, W. (2003) Multiparametric scaling of diffraction intensities. Act Crystallographica, A59, 228234 CrossRefGoogle Scholar
Palache, C., Berman, C. and Frondel, C. (1951) Dana’s System of Mineralogy, seventh edition, volume II. John Wiley and Sons, New York..Google Scholar
Parhi, P., Manivannan, V., Kohli, S. and McCurdy, P. (2008) Room temperature metathetic synthesis and characterization of a-hopeite, Zn3(PO4)2·4H2O. Materials Researc. Bulletin, 43, 18361841 Google Scholar
Pawlig, O. and Trettin, R. (1999) Synthesis and characterization of a-hopeite, Zn3(PO4)2·4H2O. Materials Researc. Bulletin, 34, 19591966 Google Scholar
Sarp, H. and Č erný , R. (2000) Rollandite, Cu3(AsO4)2·4H2O, a new mineral: its description and crystal structure. Europea. Journal of Mineralogy, 12, 10451050 CrossRefGoogle Scholar
Schofield, P.F., Knight, K.S., Hodson, M.E. and Lanfranco, A.M. (2007) Thermal expansion of deuterated hopeite, Zn3(PO4)2·4D2O. America. Mineralogist, 92, 10381047 CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Act Crystallographica, A64, 112122 CrossRefGoogle Scholar
Spencer, L.J. (1908) On hopeite and other zinc phosphates and associated minerals from Broken Hill mines, North-Western Rhodesia. Mineralogical Magazine, 15, 138.CrossRefGoogle Scholar
Whitaker, A. (1978a) The crystal structure of hopeite, Zn3(PO4)2·4H2O. Act Crystallographica, B31, 20262035 Google Scholar
Whitaker, A. (1978b) The crystal structure of hopeite, Zn3(PO4)2·4H2O: errata. Acta Crystallographica, B34, 23852386 CrossRefGoogle Scholar
Wilson, W.E. (editor) (1977) Tsumeb! The world’s greatest mineral locality. Mineralogical Record, 8(3), 1128 Google Scholar
Wu, W.-Y., Liang, X.-Q. and Li, Y.-Z. (2005a) CoZn2(PO4)2·4H2O, a cobalt-doped modification of hopeite. Acta Crystallographica, E61, i105i107.Google Scholar
Wu, W.-Y., Liang, X.-Q. and Li, Y.-Z. (2005b) CoNi2(PO4)2·4H2O, a nickel-doped modification of hopeite. Acta Crystallographica, E61, i108i110.Google Scholar
Supplementary material: File

Neuhold et al. supplementary material

CIF file

Download Neuhold et al. supplementary material(File)
File 37.9 KB