Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T04:56:23.280Z Has data issue: false hasContentIssue false

Bêhounekite, U(SO4)2(H2O)4, from Jáchymov (St Joachimsthal), Czech Republic: the first natural U4+ sulphate

Published online by Cambridge University Press:  05 July 2018

J. Plášil*
Affiliation:
Mineralogical Crystallography, Institute of Geological Sciences, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland Department of Geological Sciences, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
K. Fejfarová
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 2, Praha 8, 182 21, Czech Republic
M. Novák
Affiliation:
Department of Geological Sciences, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
M. Dušek
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 2, Praha 8, 182 21, Czech Republic
R. Škoda
Affiliation:
Department of Geological Sciences, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
J. Hloušek
Affiliation:
U Roháčových kasáren 24, Praha 10, 100 00, Czech Republic
J. Čejka
Affiliation:
Department of Mineralogy and Petrology, National Museum, Václavské námêstí 68, Praha 1, 115 79, Czech Republic
J. Majzlan
Affiliation:
Institute of Geosciences, Friedrich-Schiller University, Burgweg 11, D-07749 Jena, Germany
J. Sejkora
Affiliation:
Department of Mineralogy and Petrology, National Museum, Václavské námêstí 68, Praha 1, 115 79, Czech Republic
V. Machovic
Affiliation:
Institute of Chemical Technology, Prague, Technická 5, Praha 6, 166 28, Czech Republic Institute of Rock Structures and Mechanics, Academy of Science of Czech Republic, V Holešovičkách 41, 182 09 Praha 8, Czech Republic
D. Talla
Affiliation:
Department of Geological Sciences, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic Institute of Mineralogy and Crystallography, University of Vienna, Althanstrasse 14, A-1090 Wien, Austria

Abstract

Bêhounekite, orthorhombic U(SO4)2(H2O)4, is the first natural sulphate of U4+. It was found in the Geschieber vein, Jáchymov (St Joachimsthal) ore district, Western Bohemia, Czech Republic, crystallized on the altered surface of arsenic and associated with kaatialaite, arsenolite, claudetite, unnamed phase UM1997-20-AsO:HU and gypsum. Bêhounekite most commonly forms short-prismatic to tabular green crystals, rarely up to 0.5 mm long. The crystals have a strong vitreous lustre and a grey to greenish grey streak. They are brittle with an uneven fracture and have very good cleavage along ﹛100﹜. The Mohs hardness is about 2. The mineral is not fluorescent either in short- or long-wavelength UV radiation. Bêhounekite is moderately pleochroic, α∼β is pale emerald green and γ is emerald green, and is optically biaxial (+) with α = 1.590(2), β = 1.618(4), γ = 1.659(2) (590 nm), 2V (calc.) = 81°, birefringence 0.069. The empirical formula of bêhounekite (based on 12 O atoms, from an average of five point analyses) is (U0.99Y0.03)Σ1.02(SO4)1.97(H2O)4. The simplified formula is U(SO4)2(H2O)4, which requires UO2 53.77. SO3 31.88, H2O 14.35, total 100.00 wt.%. Bêhounekite is orthorhombic, space group Pnma, a = 14.6464(3), b = 11.0786(3), c = 5.6910(14) Å, V = 923.43(4) Å3, Z = 4, Dcalc = 3.62 g cm–3. The seven strongest diffraction peaks in the X-ray powder diffraction pattern are [dobs in Å (I) (hid)]: 7.330 (100) (200), 6.112 (54) (210), 5.538 (21) (020), 4.787 (42) (111), 3.663 (17) (400), 3.478 (20) (410), 3.080 (41) (321). The crystal structure of bêhounekite has been solved by the charge-flipping method from single-crystal X-ray diffraction data and refined to R1 = 2.10 % with a GOF = 1.51, based on 912 unique observed diffractions. The crystal structure consists of layers built up from [8]-coordinate uranium atoms and sulphate tetrahedra. The eight ligands include four oxygen atoms from the sulphate groups and four oxygen atoms from the H2O molecules. Each uranium coordination polyhedron is connected via sulphate tetrahedra with other uranium polyhedra and through hydrogen bonds to the apices of sulphate tetrahedra. The dominant features of the Raman and infrared spectra of bêhounekite are related to stretching vibrations of SO4 tetrahedra (∼1200–950 cm–1), O-H stretching modes (∼3400–3000 cm–1) and H—O—H bending modes (∼1650 cm–1). The mineral is named in honour of František Bêhounek, a well known Czech nuclear physicist.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brandenburg, K. and Putz, H. (2005) DIAMOND Version 3. Crystal Impact GbR, Postfach 1251, D-53002 Bonn, Germany.Google Scholar
Bresse, N.E. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 197-.Google Scholar
Brown, I.D. (2002) The Chemical Bond in Inorganic Chemistry. The Bond Valence Model. Oxford University Press, Oxford, UK.Google Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 248-.Google Scholar
Brown, I.D. and Shannon, R.D. (1973) Empirical bondstrength bond-length curves for oxides. Acta Crystallographica, A29, 282-.Google Scholar
Burns, P.C., Finch, R.J., Hawthorne, F.C., Miller, M.L. and Ewing, R.C. (1997) The crystal structure of ianthinite, [U4+(UO2)4O6(OH)4(H2O)4](H2O)5: a possible phase for Pu4+ incorporation during the oxidation of spent nuclear fuel. Journal of Nuclear Materials, 249, 199-206.CrossRefGoogle Scholar
Casari, B.M. and Langer, V. (2007) Two Ce(SO4)2·4H2O polymorphs: crystal structure and thermal behavior. Journal of Solid State Chemistry, 180, 1616-1622.CrossRefGoogle Scholar
Čejka, J. (1999) Infrared spectroscopy and thermal analysis of the uranyl minerals. Pp. 521-622 in: Uranium: mineralogy, geochemistry and the environment (Burns, P.C. and Finch, R., editors). Reviews in Mineralogy, 38. Mineralogical Society of America, Washington DC.CrossRefGoogle Scholar
Čejka, J. (2007) Vibrational spectroscopy of uranyl minerals – infrared and Raman spectroscopy of the uranyl minerals III. Uranyl sulphates. Bulletin mineralogicko-petrologického oddêlení Národního muzea (Praha), 14–15., 40-46. [in Czech].Google Scholar
Čejka, J. and Urbanec, Z. (1990) Secondary uranium minerals. Transactions of the Czechoslovak Academy of Sciences, Mathematical and Natural History Series, 100, 100-93.Google Scholar
Charusnikova, I.A., Krot, N.N. and Starikova, Z.A. (2000) Crystal structure and spectral characteristics of double sodium neptunium(IV) sulfate. Radiochemistry, 42, 434-438.Google Scholar
Chernyaev, I.I. (editor) (1964) Complex compounds of uranium. Nauka, Moscow, 492 pp., [in Russian].Google Scholar
Delobel, R. (1970) Etude structurale des hydrates des sulfates d’uranyle et d’uranium IV. Thesis, University of Lille, 67 pp.Google Scholar
Finch, R. and Murakami, T. (1999) Systematics and paragenesis of uranium minerals. Pp. 91-179 in: Uranium: mineralogy, geochemistry and the environment (Burns, P.C. and Finch, R., editors). Reviews in Mineralogy, 38. Mineralogical Society of America, Washington DC.CrossRefGoogle Scholar
Hawthorne, F.C. and Schindler, M. (2008) Understanding the weakly bonded constituents in oxysalt minerals. Zeitschrift für Kristallographie, 223, 41-68.Google Scholar
Hoppe, R. (1979) Effective coordination numbers (ECoN) and mean fictive ionic radii (MEFIR). Zeitschrift für Kristallographie, 150, 23-52.CrossRefGoogle Scholar
Jayadevan, N.C., Singh Mudher, K.D. and Chackraburtty, D.M. (1982) The crystal structures of α-and β-forms of plutonium(IV) sulphate tetrahydrate. Zeitschrift für Kristallographie, 161, 7-13.CrossRefGoogle Scholar
Kierkegaard, P. (1956) The crystal structure of U(SO4)2(H2O)4 . Acta Chemica Scandinavica, 10, 599-616.CrossRefGoogle Scholar
Langmuir, D. (1978) Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore. Geochimica et Cosmochimica Acta, 42, 547-569.CrossRefGoogle Scholar
Leroy, J.-M. (1966) Contribution à la connaissance physique et chimique des composés oxygénés de l’uranium aux degrés d‘oxydation 4, 5 et 6. PhD Thesis, University of Lille, 115 pp.Google Scholar
Leroy, J.-M. (1967) Contribution à la connaissance physique et chimique des composés oxygénés de l’uranium aux degrés d’oxydation 4, 5 et 6. Revue de Chimie Minérale, 4, 129-180.Google Scholar
Libowitzky, E. (1999) Correlation of O–H stretching frequencies and O–H–O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 1047-1059.CrossRefGoogle Scholar
Malinka, V.I., Nikanovich, M.V. and Umreiko, D.S. (1979) Calculation and investigation of the vibrational spectrum of the diuraniumsulfate fragment in aquasulfate complexes of tetravalent uranium. Doklady Akademii Nauk BSSR, 23, 808–811, [in Russian].Google Scholar
Malinka, V.I., Nikanovich, M.V. and Umreiko, D.S. (1981) Calculation and investigation of the vibrational spectrum of the tetraaquadisulfate of tetravalent uranium. Journal of Applied Spectroscopy, 34, 173-177.CrossRefGoogle Scholar
Momma, K. and Izumi, F. (2008) VESTA: a threedimensional visualization system for electronic and structural analysis. Journal of Applied Crystallography, 41, 653-658.CrossRefGoogle Scholar
Ondruš, P., Veselovský, F., Hloušek, J., Skála, R., Vavřín, I., Frýda, J., Čejka, J. and Gabašová, A. (1997a) Secondary minerals of the Jáchymov (Joachimsthal) ore district. Journal of the Czech Geological Society, 42, 3-76.Google Scholar
Ondruš, P., Veselovský, F., Skála, R., Císařová, I., Hloušek, J., Frýda, J., Vavřín, I., Čejka, J. and Gabašová, A. (1997b) New naturally occurring phases of secondary origin from Jáchymov (Joachimsthal). Journal of the Czech Geological Society, 42, 77-107.Google Scholar
Ondruš, P., Veselovský, F., Gabašová, A., Hloušek, J., šrein, V., Vavřín, I., Skála, R., Sejkora, J. and Drábek, M. (2003) Primary minerals of the Jáchymov ore district. Journal of the Czech Geological Society, 48, 19-147.Google Scholar
Oxford Diffraction (2010) CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, UK.Google Scholar
Palatinus, L. and Chapuis, G. (2007) Superflip – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. Journal of Applied Crystallography, 40, 451-456.CrossRefGoogle Scholar
Petříček, V., Dušek, M. and Palatinus, L. (2006) Jana 2006. The crystallographic computing system. Institute of Physics, Prague, Czech Republic.Google Scholar
Plášil, J., Fejfarová, K., Novák, M., Dušek, M., Sejkora, J., škoda, R., Hloušek, J. and Majzlan, J. (2011) Bêhounekite, IMA 2010-046. CNMNC Newsletter No. 7, February 2011, page 28; Mineralogical Magazine, 75, 27-31.Google Scholar
Pouchou, J.L. and Pichoir, F. (1985) “PAP” (φρZ) procedure for improved quantitative microanalysis. Pp. 104-106 in: Microbeam Analysis (Armstrong, J.T., editor). San Francisco Press, San Francisco, California, USA.Google Scholar
Robinson, K., Gibbs, G.V. and Ribbe, P.H. (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science, 172, 567-570.CrossRefGoogle ScholarPubMed
Schindler, M. and Hawthorne, F.C. (2008) The stereochemistry and chemical composition of interstitial complexes in uranyl-oxysalt minerals. The Canadian Mineralogist, 46, 467-501.CrossRefGoogle Scholar
Sing Mudher, K.D., Krishnan, K., Chackraburtty, D.M. and Jayadevan, N.C. (1988) Structural and thermal investigations of tetrasulphates of uranium(IV) and plutonium(IV). Journal of the Less Common Metals, 143, 173-182.CrossRefGoogle Scholar
Singer, J. and Cromer, D.T. (1959) The crystal structure analysis of zirconium sulphate tetrahydrate. Acta Crystallographica, 12, 719-723.CrossRefGoogle Scholar
Smith, D.G.W. and Nickel, E.H. (2007) A system for codification for unnamed minerals: report of the Subcommittee for Unnamed Minerals of the IMA Commission on New Minerals, Nomenclature and Classification. The Canadian Mineralogist, 45, 983-1055.CrossRefGoogle Scholar
Taylor, S.R. and McLennan, S.M. (1985) The Continental Crust: its Composition and Evolution. Blackwell, Oxford, UK, 328pp.Google Scholar
Tvrdý, J. and Plášil, J. (2010) Jáchymov – Reiche Erzlagerstä tte und Radonbad im böhmischen Westerzgebirge. Aufschluss, 61, 277-292.Google Scholar
Umreiko, D.S. and Nikanovich, M.V. (1984) Vibrational spectroscopy and structural analysis of complex uranium compounds (review). Journal of Applied Spectroscopy, 41, 1303-1314.CrossRefGoogle Scholar
Supplementary material: File

Plášil et al. supplementary material

Cif file

Download Plášil et al. supplementary material(File)
File 66.3 KB
Supplementary material: PDF

Plášil et al. supplementary material

letter from IMA

Download Plášil et al. supplementary material(PDF)
PDF 215.9 KB