Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T14:43:11.680Z Has data issue: false hasContentIssue false

The Chemistry of Formation of Some Secondary Arsenate Minerals of Cu(II), Zn(II) and Pb(II)

Published online by Cambridge University Press:  05 July 2018

M. Clara F. Magalhães
Affiliation:
Department of Chemistry, University of Aveiro, Aveiro, Portugal
Julio D. Pedrosa de Jesus
Affiliation:
Department of Chemistry, University of Aveiro, Aveiro, Portugal
Peter A. Williams
Affiliation:
Department of Chemistry, University College, PO Box 78, Cardiff, Wales, CF1 1XL

Abstract

Solution studies have been carried out on natural and synthetic arsenate minerals, which are often found in the oxide zones of base metal orebodies. Solubility products and free energy of formation data have been derived for the minerals olivenite, cornubite, clinoclase, adamite, legrandite, euchroite, duftite, conichalcite, austinite, bayldonite, and schultenite at 298.2 K (25 °C). The data have been used in turn to construct stability field diagrams illustrating the chemical conditions under which the various species may crystallize from aqueous solution. This equilibrium model is then compared with several natural occurrences of the arsenate suites and it is demonstrated that it can be used to explain a number of observed paragenetic sequences. Descriptions of solution conditions which describe the stabilities of the arsenate minerals with respect to more commonly found secondary minerals of Pb(II), Cu(II), and Zn(II) involve more complex calculations and estimates of the likely levels of various dissolved species, but it is shown how these may be taken into account in the development of a more complex equilibrium model.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alwan, A.K. and Williams, P.A. (1979) Transition Metal Chem. 4, 128-32.CrossRefGoogle Scholar
Baes, C.F. and Mesmer, R.E. (1976) The Hydrolysis of Cations. John Wiley and Sons, New York.Google Scholar
Banfield, F.S., Meek, D.M., and Lowden, G.F. (1978) Technical Report TR76. Water Research Centre, Medmenham Laboratory, Harlow, U.K.Google Scholar
Barbeleac, I. (1975) Rev. Roum. Géol. Gkophys. Gbog., Géol. Ser. 19, 85-94.Google Scholar
Barner, H.E. and Scheuerman, R.H. (1978) Handbook of Thermochemical Data for Compounds and Aqueous Species. John Wiley and Sons, New York.Google Scholar
Bayliss, P., Lawrence, L.J., and Watson, D. (1966) Austral. J. Sci. 29, 145-6.Google Scholar
Berry, L.G. (1951) Am. Mineral. 36, 484-503.Google Scholar
Chukhlantsev, V.G. (1956) J. lnorg. Chem. USSR, 1, 1975-82.Google Scholar
Claringbull, G.F., Hey, M.H., and Davis, R.J. (1959) Mineral. Mag. 32, 1-5.Google Scholar
Desautels, P.E. and Clarke, R.S. (1963) Am. Mineral. 48, 1258-65.Google Scholar
Drugman, J. and Hey, M.H. (1932) Mineral. Mag. 23, 175-8.Google Scholar
Falls, R., Cannon, B., and Mandarino, J.A. (1985) Ibid. 49, 65-9.Google Scholar
Fleischer, M. (1977) Am. Mineral. 62, 599.Google Scholar
Fleischer, M. (1987) Glossary of Mineral Species. 5th Ed., Mineralogical Record Inc., Tucson.Google Scholar
Garrels, R.M. and Christ, C.L. (1965) Solutions, Minerals and Equilibria. Harper and Row, New York.Google Scholar
Ghose, S. and Wan, C. (1979) Acta Crystallogr. B35, 819-23.Google Scholar
Guillemin, C. (1956) Bull. Soc.fr. Minbral. Crystallogr. 79, 7-95.Google Scholar
Hillebrand, W.F. and Washington, H.S. (1888) Am. J. Sci. 35, 298-30..CrossRefGoogle Scholar
Iwasaki, I., Utsumi, S., and Kang, C. (1963) Bull. Chem. Soc. Japan, 36, 325-31.CrossRefGoogle Scholar
Jensen, M. (1985) Mineral Rec. 16, 57-72.Google Scholar
Keller, P. (1977) Ibid. 8, 38-47.Google Scholar
Keller, P. (1981) Aufschluss, 32, 437-41.Google Scholar
Keller, P. and Bartelke, W. (1982) Mineral. Rec. 13, 137-47.Google Scholar
Parr, W.H., and Dunn, P.J. (1981) Tschermaks Mineral. Pert. Mitt. 28, 157-64.Google Scholar
Kohlberger, W. (1976) Mineral. Rec. 7, 114-25.Google Scholar
Liu, F. and Chen, D. (1982) Anal. Abs. 42(2), 281-30.Google Scholar
Magalhées, M.C.F., Pedrosa de Jesus, J., and Williams, P.A. (1986) Mineral. Mag. 50, 339.Google Scholar
Mincheva-Stefanova, I. (1962) Izv. Geol. Inst. Bulg. Akad. Nauk, 10, 238 [MA: 16, 179].Google Scholar
Moiseeva, M.I. (1970) Mineral. Uzb. 3, 20.Google Scholar
Motomizu, S., Fuguwara, S. and Toei, K. (1981) Anal. Chim. Acta, 128, 185-94.CrossRefGoogle Scholar
Nriagu, J.O. and Moore, P.B., eds. (1984) Phosphate Minerals, Springer-Verlag, Berlin.CrossRefGoogle Scholar
Palache, C., Berman, H., and Frondel, C. (1951) The System of Mineralogy. II, John Wiley and Sons, New York.Google Scholar
Pallix, G. (1978) Mineral. Rec. 9, 69-73.Google Scholar
Parker, F.J. and Troy, J. (1982) Ibid. 13, 35-8.Google Scholar
Perrin, D.D. and Sayce, I.G. (1967) Talanta, 14, 833- 42.CrossRefGoogle Scholar
Pinch, W.W. and Wilson, W.E. (1977) Mineral. Rec. 8, 17-37.Google Scholar
Robie, R.A., Hemingway, B.S., and Fisher, J.R. (1978) Thermodynamic Properties of Minerals and Related Substances at 298.15 Kand I Bar (105 Pascal) Pressure and at Higher Temperatures. U.S. Geol. Surv. Bull. 1452.Google Scholar
Rushton, D.R.A. (1972) Mineral. Mag. 38, 626-7.CrossRefGoogle Scholar
Ryall, W.R. and Segnit, E.R. (1976) Austral. Min. 2, 58.Google Scholar
Schmetzer, K. (1982) Aufschluss, 33, 1-2.Google Scholar
Schnorrer-Köhler, G. (1984) Ibid. 35, 93-109.Google Scholar
Segeler, C.G. and Molon, J. (1981) Rocks and Minerals, 56, 233-9.CrossRefGoogle Scholar
Segnit, E.R. (1978) Austral. Min. 15, 734.Google Scholar
Smith, J.D. (1973) In Comprehensive Inorganic Chemistry (Bailar, J. C. Jr., Emeléus, A. J., Nyholm, R. S. and Trotman-Dickenson, A. F., eds.), 2. Pergamon Press, Oxford.Google Scholar
Smith, R.M. and Martell, A.E. (1976) Critical Stability Constants, 4, Plenum Press, New York.CrossRefGoogle Scholar
Spencer, L.J. (1926) Mineral. Mag. 21, 149-55.Google Scholar
Staples, L.W. (1935) Am. Mineral. 20, 371.Google Scholar
Walenta, K. (1969) Aufschluss, 20, 85-93.Google Scholar
Walenta, K. (1975) Ibid. 26, 369-411.Google Scholar
Walenta, K. (1980) Ibid. 31, 141-50.Google Scholar
Walenta, K. (1981) Ibid. 32, 333-40.Google Scholar
Williams, S.A. (1963) Econ. Geol. 58, 599-601.CrossRefGoogle Scholar
Williams, S.A. and de Azevedo, J. (1967) Am. Mineral. 52, 122-4. 6.Google Scholar
Wilson, W.E. (1978) Mineral. Rec. 9, 192-5.Google Scholar