Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-03T22:08:39.105Z Has data issue: false hasContentIssue false

The chemistry, reflectance, and cell size of the erlichmanite (OsS2)-laurite (RuS2) series

Published online by Cambridge University Press:  05 July 2018

J. F. W. Bowles
Affiliation:
Geochemical Division, Institute of Geological Sciences, 64/78 Gray's Inn Road, London WC1X 8NG
D. Atkin
Affiliation:
Geochemical Division, Institute of Geological Sciences, 64/78 Gray's Inn Road, London WC1X 8NG
J. L. M. Lambert
Affiliation:
Geochemical Division, Institute of Geological Sciences, 64/78 Gray's Inn Road, London WC1X 8NG
T. Deans
Affiliation:
20 Grove Park Road, Chiswick, London W4 3SD
R. Phillips
Affiliation:
Department of Geological Sciences, University of Durham, South Road, Durham DH1 3LE

Abstract

Microprobe analyses of members of the erlichmanite-laurite series from Guma Water and Senduma, Sierra Leone and Tanah Laut, Borneo, indicate that complete solid solution is possible between OsS2 and RuS2 with considerable substitution of Os and Ru by Ir, Rh, and Pt. The cell size of the erlichmanite from Guma Water is a = 5.6183±0.0003 Å at a composition (Os0.61Ru0.30Ir0.06Rh0.03)Σ0.93S2 whilst the laurite from Senduma has a composition of (Ru0.88Os0.05Ir0.04 Rh0.03)Σ0.93S2 and a cell size of a = 5.6089±0.0005 Å. Substitution of Os for Ru provides the predominant cause of the variation of cell size. Substitution by other elements of the platinum group appears to produce little effect on cell size and is presumably controlled by genesis rather than considerations of crystal chemistry or structure. The recorded analyses for these elements indicate a pre-dominance of Ir over Rh for members of the series containing more than about 15% of the laurite molecule. For the remainder of the series Rh is more important than Ir. The reflectance in air and oil of the members of the series from Sierra Leone and Borneo are presented and the microhardness of the erlichmanite from Guma Water shown to be 1854 kg/mm2. This is the first report of laurite from Senduma, Sierra Leone.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bannister, F. A. (1932) Mineral. Mag. 23, 188206.Google Scholar
Begizov, V. D., Zav'yalov, E. N, and Khostova, V. P. (1976) Zap. Vses. Mineral. Obshch. 105, 213–18 [MA 77–3355].Google Scholar
Biltz, W., Lahr, J., Ehrlich, P., and Meisel, K. (1937) Z. anorg. Chem. 233, 263–6.Google Scholar
Bowles, J. F. W. (1975) Inst. of Geol. Sci Lond. Report No. 75/9 [MA 76–82].Google Scholar
Bowles, J. F. W. (1981) Bull. Mineral. 104, 478–83 [MA 82M/1723].Google Scholar
Cabri, L. J. (1981) In Platinum-Group Elements: Mineralogy, Geology Recovery (Cabri, L. J. ed.) Can. Inst. Mining. Met., Spec. Publ. 23, 267 pp.Google Scholar
Criddle, A. J., Laflamme, J. H. G., Bearne, G. S., and Harris, D. (1981) Bull. Mineral. 104, 508–25 [MA 82M/1724].Google Scholar
Dunham, K. C. Phillips, R., Chalmers, R. A., and Jones, D. A. (1958) Col. Geol Mineral. Res Bull. Suppl. No. 3. 139.Google Scholar
Elliott, N. (1960) J. Chem. Phys. 33, 903–5.CrossRefGoogle Scholar
Feather, C. E. (1976) Econ. Geol. 71, 1399–428.CrossRefGoogle Scholar
Grönvold, F., Haraldson, H., and Kjekshus, A. (1960) Acta Chem. Scand. 14, 1879–93.CrossRefGoogle Scholar
Harris, D. C. (1974) Can. Mineral. 12, 280–4 [MA 76–885]Google Scholar
Hulliger, F. (1964) Nature, London, 204, 644–6.CrossRefGoogle Scholar
Kingston, G. A. (1966) Trans. Inst. Mining Met. B75. B98–9 (Discussion).Google Scholar
Leonard, B. F., Desborough, G. A., and Page, N. J. (1969) Am. Mineral. 54, 1330–46 [MA 70–1598].Google Scholar
Munsen, R. A. (1968) Inorg. Chem. 7, 389–90.CrossRefGoogle Scholar
Munsen, R. A. and Kaspar, J. S. (1969) Ibid. 8, 1198–9.Google Scholar
Parthé, E. (1972) In Handbook of Geochemistry (Wedepohl, K. H. ed.) Berlin-Heidelberg (Springer-Verlag).Google Scholar
Picot, P., and Johan, Z. (1977) Atlas des Mineraux Métalliques. Mem. BRGM No. 90–1977 [MA 78–2595].Google Scholar
Shannon, R. D. (1981) In Structure and Bonding in Crystals, 2 (O'Keeffe, M. and Navrotsky, A. eds.) New York (Academic Press), 384 pp.Google Scholar
Shannon, R. D. and Prewitt, C. T. (1969) Acta Cryst. B25, 925–46.CrossRefGoogle Scholar
Snetsinger, K. G. (1971) Am. Mineral. 56, 1501–6 [MA 72–1398].Google Scholar
Sutarno, Knop, O., and Reid, K. I. G. (1967) Can. J. Chem. 45, 1391–1400.CrossRefGoogle Scholar
Thomassen, L. (1929) Z. Phys. Chem. B, 4, 284–9.Google Scholar
Vyal'sov, L. N. (1973) Petrography, Mineralogy and Geochemistry. Akad. Sci. USSR. Inst. Geol. or Ore Deposits, 67 pp.Google Scholar
Whittaker, E. J. W., and Muntus, R. (1970) Geochim. Cosmochim. Acta. 34, 945–56 [MA 71–376].CrossRefGoogle Scholar
Wöhler, F. (1866) Ges. Wiss. Göttingen Nachr. 155–60.Google Scholar