Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-07T10:17:35.208Z Has data issue: false hasContentIssue false

Composition and element mobilization in pyrometallurgical slags from the Orzeł Biały smelting plant in the Bytom–Piekary Śląskie area, Poland

Published online by Cambridge University Press:  02 January 2018

R. Warchulski
Affiliation:
Faculty of Earth Sciences, University of Silesia, Katowice, Poland
A. Gawęda
Affiliation:
Faculty of Earth Sciences, University of Silesia, Katowice, Poland
M. Kądziołka-Gaweł
Affiliation:
Faculty of Mathematics, Physics and Chemistry, University of Silesia, Katowice, Poland
K. Szopa
Affiliation:
Faculty of Earth Sciences, University of Silesia, Katowice, Poland

Abstract

Wastes accumulated at Piekary Śląskie, Poland, are the result of 150 years of continuous working of the Orzeł Biały smelting plant. Slags are composed of: oxides (spinel, hematite, zincite); silicates and aluminosilicates (olivine, monticellite–kirschteinite, titanite, merwinite, pyroxene, melilite, feldspars: plagioclases and plumbean K-feldspar, nepheline, kalsilite, leucite); sulfides (pyrrhotite, rudashevskyite, galena), metallic phases (pure iron and iron–arsenic mixture) and secondary phases (gypsum, rapidcreekite, apatite). Interstices between the crystalline phases are filled by glass, concentrating toxic and potentially harmful elements, e.g. up to 53.22 wt.% PbO. The sequence of crystallization of primary phases depended on the local variability of oxygen fugacity and degree of calcination, while the texture type resulted from the cooling time and partial pressure of volatiles. Suggested crystallization temperatures are in the range of 1200–1500°C. Bulk chemical analyses show that the slags are composed mainly of SiO2, Al2O3,Fe2O3, MgO and CaO. Among the potentially harmful elements, Zn is the most common, reaching up to 5.93 wt.%, Pb is present in concentrations up to 3.9 wt.% and As in weathered samples exceeds 1 wt.%. Leaching tests of these elements confirms As mobility as Zn and Pb are preferably leached from fresh slags, while As is present in greater amounts in leachate from weathered slag samples. The documented amounts of As, Zn, Pb and their mobility in slags produce an environmental risk, as this material is currently used widely for commercial purposes.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bachmann, H.G. (1982) The identification of slags from archeological sites. Institute of Archaeology London, Occasional Publications, 6, 137.Google Scholar
Basta, N.T., Gradwohl, R., Snethen, K.L. and Schroder, J.L. (2001) Chemical immobilization of lead, zinc, and cadmium in smelter-contaminated soils using biosolids and rock phosphate. Journal of Environmental Quality, 30, 12221230.CrossRefGoogle ScholarPubMed
Bowen, N.L. and Schairer, J.F. (1935) The system MgO-FeO-SiO2 . American Journal of Science, 5(29), 151217.CrossRefGoogle Scholar
Bril, H., Zainoun, K., Puziewicz, J., Courtin-Nomade, A., Vanaecker, M. and Bollinger, J-C. (2008). Secondary phases from the alteration of a pile of zinc-smelting as indicators of environmental conditions: an example from S´ wie˛tochłowice, Upper Silesia, Poland. The Canadian Mineralogist, 46, 12351248.CrossRefGoogle Scholar
Britvin, S.N., Bogdanova, A.N., Boldyreva, M.M. and Aksenova, G.Y. (2008) Rudashevskyite, the Fedominant analogue of sphalerite, a new mineral: Description and crystal structure. American Mineralogist, 93, 902909.CrossRefGoogle Scholar
Cabała, J., Krupa, P. and Misz-Kennan, M. (2009) Heavy metals in mycorrhizal rhisospheres contaminated by Zn-Pb mining and smelting around Olkusz in southern Poland. Water, Air and Soil Pollution, 199, 139149.CrossRefGoogle Scholar
Chmielarz, A. and Czaplicka, M. (2008) Materiały informacyjne do nowelizacji dokumentu referencyjnego najlepszych doste˛pnych technik w przemys´le metali nieżelaznych. Instytut Metali Nieżelaznych, Gliwice, Poland.Google Scholar
Deer, W.A., Howie, R.A. and Zussman, J. (1992) An Introduction to the Rock-Forming Minerals, 2nd ed. Longman Scientific and Technical, Hong Kong.Google Scholar
Ernst, W.H. (1996) Schwermetalle. Pp. 191220. in: Stress bei Pflanzen (C. Brunold, , Rüegesegger, A. and R. Brändle, editors). Wissenschaft, Paul Haupt Verlag, Stuttgart, Germany.Google Scholar
Ettler, V., Legendre, O., Bodénan, F. and Touray, J.-C. (2001) Primary phases and natural weathering of old lead-zinc pyrometalurgical slag from Příbram, Czech Republic. The Canadian Mineralogist, 39, 873888.CrossRefGoogle Scholar
Ettler, V., Komárková, M., Jehlička, J., Coufal, P., Hradil, D., Machovič, V. and Delorme, F. (2004) Leaching of lead metallurgical slag in citric solutions-implications for disposal and weathering in soil environments. Chemosphere, 57, 567577.CrossRefGoogle ScholarPubMed
Ettler, V., Johan, Z., Kribek, B., Šebek, O. and Mihaljevic, M. (2009) Mineralogy and environmental stability of slags from the Tsumeb smelter, Namibia. Applied Geochemistry, 24, 115.CrossRefGoogle Scholar
Hayward, C.R. (1952) An Outline of Metallurgical Practice. 3rd edition. D. Van Nostrand Company, Inc., New York. Heijlen, W., Muchez, P., Banks, D.A., Schneider, J., Kucha, H. and Keppens, E. (2003) Carbonate-hosted Zn-Pb deposits in Upper Silesia, Poland: Origin and evolution of mineralizing fluids and constraints on genetic models. Economic Geology, 98, 911932.Google Scholar
Kabata-Pendias, A. and Pendias, H. (1999) Trace metal biochemistry. Warsaw, PWN, second edition [p. 398; in Polish]. Kierczak, J. and Pietranik, A. (2011) Mineralogy and composition of historical Cu slags from the Rudawy Janowickie Mountains, southwestern Poland. The Canadian Mineralogist, 49, 12811296.Google Scholar
Kierczak, J., Bril, H., Neel, C. and Puziewicz, J. (2010) Pyrometallurgical slags in Upper and Lower Silesia (Poland): from environmental risk to use of slagbased product-a review. Archives of Environmental Protection, 36(3), 111126.Google Scholar
Kotucha, W. (2008) Brzeziny S ´ la˛skie-historical sketch. Wydawnictwo Kubajak, Krzeszowice, Poland [Polish title: Brzeziny S ´ la˛skie-rys historyczny].Google Scholar
Kucha, H., Martens, A., Ottenburgs, R., De Vos, W. and Viaene, W. 1996: Primary minerals of Zn-Pb mining and metallurgical dumps and their environmental behavior at Plombières, Belgium. Environmental Geology, 27, 115.CrossRefGoogle Scholar
Ladell, J., Zagofsky, A. and Pearlman, S. (1975) Cu Ka2 elimination algorithm. Journal of Applied Crystallography, 8, 499506.CrossRefGoogle Scholar
Lottermoser, B.G. (2002) Mobilization of heavy metals from historical smelting slag dumps, north Queensland, Australia. Mineralogical Magazine, 66, 475490.CrossRefGoogle Scholar
Morimoto, N. (1989) Nomenclature of pyroxenes. The Canadian Mineralogist, 27, 143156.Google Scholar
Mzyk, I. (2003) Charakterystyka geochemiczna odpado ´w po hutnictwie rud cynkowo-ołowiowych ze zwałowiska w Rudzie S ´ la˛skiej-Wirku. Publikacje VI Ogólnopolskiej Konferencji Naukowej WbiIS´ , Ustronie Morskie, 715722.Google Scholar
Perez, J.L. (1994) Charakterystyka i kontrola skażeńwywołanych przez metale cie˛żkie w gruntach i wodach. Materiały konferencyjne, Kraków, Poland Piatak, N.M. and Seal II, R.R. (2010) Mineralogy and the release of trace elements from slag from the Hegelr Zinc smelter, Illinois (USA). Applied Geochemistry, 25, 302320.Google Scholar
Puziewicz, J., Zainoun, K. and Bril, H. (2007) Primary phases in pyrometallurgical slags from a zincsmelting waste dump, S´ wie˛ tochłowice, Upper Silesia, Poland. The Canadian Mineralogist, 45, 11891200.CrossRefGoogle Scholar
Rachinger, W.A. (1948) A correction for the a1a2 doublet in the measurement of widths of X-ray diffraction lines. Journal of Scientific Instruments, 25, 254255.CrossRefGoogle Scholar
Sterns, J.G., Khasanov, A.M., Miller, J.W., Pollak, H. and Zhe, L. (1998) Mössbauer mineral handbook. Mössbauer Effect Data Center, Asheville, USA. Sybliski, D., Kraszewski, C., Duszyński, A., Wileński, P., Pachowski, J. and Mirski, K. (2004) Estimations and investigations of selected industrial wastes for the usage in road construction. Road and Bridge Research Institute, Warsaw [in Polish].Google Scholar
Taylor, M.P., Mackay, A.K., Hudson-Edwards, K.A. and Holz, E. (2010) Soil Cd, Cu, Pb and Zn contaminants around Mount Isa city, Queensland, Australia: Potential sources and risks to human health. Applied Geochemistry, 25(6), 841855.CrossRefGoogle Scholar
Tyszka, R., Kierczak, J., Pietranik, A., Ettler, V. and Mihaljevič, M. (2014) Extensive weathering of zinc smelting slag in a heap in Upper Silesia (Poland): Potential environmental risks posed by mechanical disturbance of slag deposits. Applied Geochemistry, 40, 7081.CrossRefGoogle Scholar
Ullrich, S.M., Ramsey, M.H. and Helios-Rybicka, E. (1999) Total and exchangeable concentrations of heavy metals in soils near Bytom, an area of Pb/Zn mining and smelting in Upper Silesia, Poland. Applied Geochemistry, 14, 187196.CrossRefGoogle Scholar
Vener, J.F., Ramsey, M.H., Helios-Rybicka, E. and Je˛drzejczyk, B. (1996) Heavy metal contamination of soils around a Pb-Zn smelter in Bukowno, Poland. Applied Geochemistry, 11, 1116.CrossRefGoogle Scholar