Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T07:14:24.165Z Has data issue: false hasContentIssue false

The crystal chemistry of oxo-mangani-leakeite and mangano-mangani-ungarettiite from the Hoskins mine and their impossible solid-solution: An XRD and FTIR study

Published online by Cambridge University Press:  02 January 2018

Roberta Oberti*
Affiliation:
CNR-Istituto di Geoscienze e Georisorse, Sede secondaria di Pavia, via Ferrata 1, I-27100 Pavia, Italy
Giancarlo Della Ventura
Affiliation:
Dipartimento di Scienze, Università di RomaTre, largo S. Murialdo 1, I-00146 Roma, Italy
Massimo Boiocchi
Affiliation:
Centro Grandi Strumenti, Università di Pavia, via Bassi 21, I-27100 Pavia, Italy
Alberto Zanetti
Affiliation:
CNR-Istituto di Geoscienze e Georisorse, Sede secondaria di Pavia, via Ferrata 1, I-27100 Pavia, Italy
Frank C. Hawthorne
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada

Abstract

New chemical (EMP, SIMS) and structural data are reported for a suite of crystals of oxo-mangani-leakeite and mangano-mangani-ungarettiite from their common type locality, the Hoskins mine (New South Wales, Australia). Notwithstanding the low OH content, FTIR analysis of selected sampleshas provided considerable information on short-range order in these Mn3+-rich amphiboles, and shows that Li is associated with occupied A sites and is linked to the oxo-component at the O(3) site. Comparative analysis of all available data allows us to: (1) further improveour understanding of the crystal-chemistry of these very peculiar compositions of the oxo-amphibole group; and (2) calculate reliable site-populations. The proposed limited compositional variability has been confirmed. The two amphiboles have completely different arrangements of CR3+cations. In oxo-mangani-leakeites, those CR3+ cations related to the oxocomponent occur at the M (1) site, whereas those CR3+ cations related to the leakeite charge-arrangement occur at the M (2) site. In mangano-mangani-ungarettiite,all CR3+ cations order at the M (1) and M (3) sites, and local bond-valence requirements are satisfied by the presence of Mn3+, which assumes a strongly distorted coordination due to its degenerate eg electronic state. Therefore,the inverse patterns observed for both cation-ordering and deformation of the octahedra are incompatible with solid-solution between these two species that coexist at the Hoskins mine.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashley, P.M. (1986) An unusual manganese silicate occurrence at the Ho skins mine, Grenfell district, New South Wales. Australian Journal of Earth Sciences, 33, 443456.CrossRefGoogle Scholar
Ashley, P.M. (1989) Geochemistry and mineralogy of tephroite-bearing rocks from the Hoskins manganese mine, New South Wales, Australia. Neues Jahrbuch für Mineralogie Abhandlungen, 161, 85111.Google Scholar
Brown, I.D. and Shannon, R.D. (1973) Empirical bond-strength-bond-lengths curves for oxides. Acta Crystallographica, A29, 266282.CrossRefGoogle Scholar
Bruker (2003) SAINT Software Reference Manual. Version 6. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Busing, W.R., Martin, K.O and Levy, H.A. (1962) ORFLS. Report ORNL-Tm-305. Oak Ridge National. Laboratory, Oak Ridge, Tennessee.Google Scholar
Cannillo, E., Germani, G. and Mazzi, F. (1983) New Crystallographic Software for Philips PW11000 Single Crystal Diffractometer. CNR Centro di Studio per la Cristallografia, Internal Report 2.Google Scholar
Della Ventura, G., Robert, J.-L. and Hawthorne, F.C. (1996) Infrared spectroscopy of synthetic (Ni,Mg,Co)-potassium-richterite. Geochimica et Cosmochimica Acta, spec. vol. 5, 5563.Google Scholar
Della Ventura, G., Robert, J.-L., Raudsepp, M., Hawthorne, F.C. and Welch, M. (1997) Site occupancies in synthetic monoclinic amphiboles: Rietveld structure-refinement and infrared spectroscopy of (nickel, magnesium, cobalt)-richterite. American Mineralogist, 82, 291301.CrossRefGoogle Scholar
Della Ventura, G., Robert, J.-L., Hawthorne, F.C., Raudsepp, M. and Welch, M.D. (1998) Contrasting ]Al ordering in synthetic Mg-and Co-pargasite. The Canadian Mineralogist, 36, 12371244.Google Scholar
Della Ventura, G., Hawthorne, EC, Robert, J.-L., Delbove, F., Welch, M.D. and Raudsepp, M. (1999) Short-range order of cations in synthetic amphiboles along the richterite — pargasite join. European Journal of Mineralogy, 11, 7994.CrossRefGoogle Scholar
Della Ventura, G., Hawthorne, EC, Robert, J.-L. and Iezzi, G. (2003) Synthesis and infrared spectroscopy of amphiboles along the tremolite-pargasite join. European Journal of Mineralogy, 15, 341347.CrossRefGoogle Scholar
Della Ventura, G., Oberti, R., Hawthorne, EC and Bellatreccia, E (2007) FTIR spectroscopy of Ti-rich pargasites from Lherz and the detection of O2∼ at the anionic O3 site in amphiboles. American Mineralogist, 92, 16451651.CrossRefGoogle Scholar
Eggleton, R.A. and Ashley, P.M. (1989) Norrishite, a new manganese mica, K(Mn23þLi)Si4O12, from the Hoskins mine, New South Wales, Australia. American Mineralogist, 74, 13601367.Google Scholar
Gottschalk, M. and Andrut, M. (1998) Structural and chemical characterization of synthetic (Na,K)-richter-ite solid solutions by EMP, HRTEM, XRD and OH-valence vibrational spectroscopy. Physics and Chemistry of Minerals, 25, 101111.CrossRefGoogle Scholar
Hawthorne, EC and Della Ventura, G. (2007) Short-range order in amphiboles. Pp. 173222 in: Amphiboles: Crystal Chemistry, Occurrence and Health Issues (F.C. Hawthorne, R. Oberti, G. Della Ventura and A. Mottana, editors). Reviews in Mineralogy & Geochemistry, 67. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Hawthorne, EC, Oberti, R., Cannillo, E., Sardone, N., Zanetti, A., Grice, J.D. and Ashley, P.M. (1995) A new anhydrous amphibole from the Hoskins mine, Grenfell, New South Wales, Australia: description and crystal structure of ungarettiite, NaNa2 (Mn33þMn22þ)Si8O22O2 . American Mineralogist, 80, 165172.CrossRefGoogle Scholar
Hawthorne, EC, Delia Ventura, G. and Robert, J.-L. (1996a) Short-range order of (Na,K) and Al in tremolite: An infrared study. American Mineralogist, 81, 782784.Google Scholar
Hawthorne, EC, Delia Ventura, G. and Robert, J.-L. (1996b) Short-range order and long-range order in amphiboles: A model for the interpretation of infrared spectra in the principal OH-stretching region. Geochimica et Cosmochimica Acta, spec. vol. 5, 4954.Google Scholar
Hawthorne, EC, Delia Ventura, G., Robert, J.-L., Welch, M.D., Raudsepp, M. and Jenkins, D.M. (1997) A Rietveld and infrared study of synthetic amphiboles along the potassium-richterite — tremolite join. American Mineralogist, 82, 708716.CrossRefGoogle Scholar
Hawthorne, EC, Welch, M.D., Della Ventura, G., Shuangxi Liu, Robert, J.-L. and Jenkins, D.M. (2000) Short-range order in synthetic alluminous tremolites: an infrared and triple-quantum MAS NMR study. American Mineralogist, 85, 17161724.CrossRefGoogle Scholar
Hawthorne, EC, Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacher, J.C. and Welch, M.D. (2012) Nomenclature of the amphibole supergroup. American Mineralogist, 97, 20312048.CrossRefGoogle Scholar
Kalinin, V.V., Marsiy, I.M., Dikov, Yu.P., Troneva, N.V. and Trubkin, N.V (1992) Namansilite NaMn3+Si2O6: A new silicate. Proceedings of the Russian Mineralogical Society, I, 8994.Google Scholar
Kawachi, Y., Coombs, D.S., Leake, B.E. and Hinton, R.W. (2002) The anhydrous amphibole ungarettiite from the Woods mine, New South Wales, Australia. European Journal of Mineralogy, 14, 375377.CrossRefGoogle Scholar
North, A.C.T., Phillips, D.C and Mathews, F.S. (1968) A semi-empirical method of absorption correction. Acta Crystallographica, A24, 351359.CrossRefGoogle Scholar
Oberti, R., Cámara, F., Ottolini, L. and Caballero, J.M. (2003) Lithium in amphiboles: detection, quantification, and incorporation mechanisms in the compositional space bridging sodic and BLi-amphiboles. European Journal of Mineralogy, 15, 309319.CrossRefGoogle Scholar
Oberti, R., Hawthorne, EC, Cannillo, E. and Camara, E (2007) Long-range order in amphiboles. Pp. 125172 in: Amphiboles: Crystal Chemistry, Occurrence and Health Issues (F.C. Hawthorne, R. Oberti, G. Della Ventura and A. Mottana, editors). Reviews in Mineralogy & Geochemistry, 67. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Oberti, R., Boiocchi, M., Hawthorne, EC, Ball, N.A. and Ashley, P.M. (2016a) Oxo-mangani-leakeite from the Hoskins mine, New South Wales, Australia: occurrence and mineral description. Mineralogical Magazine, 80, 10131021, https://doi.org/10.1180/minmag.2016.080.037 CrossRefGoogle Scholar
Oberti, R., Boiocchi, M., Zema, M. and Della Ventura, G. (2016b) Synthetic potassic-ferro-richterite: 1. Composition, crystal structure refinement and HT behavior by in operando single-crystal X-ray diffraction. The Canadian Mineralogist, 54, 353369.Google Scholar
Reece, II, Redfern, S.A.T., Welch, M.D., Henderson, C. M.B. and McCammon, C.A. (2002) Temperature-dependent Fe2+-Mn2+ order-disorder behaviour in amphiboles. Physics and Chemistry of Minerals, 29, 562570.CrossRefGoogle Scholar
Robert, J.-L., Beny, J.-M., Beny, C and Volfinger, M. (1989) Characterization of lepidolites by Raman and infrared spectrometries. I. Relationship between OH-stretching wavenumbers and composition. The Canadian Mineralogist, 27, 225235.Google Scholar
Robert, J.-L., Della Ventura, G. and Hawthorne, EC (1996) Infrared characterization of (OH-F)-pargasites. Physics and Chemistry of Minerals, 23, 307.CrossRefGoogle Scholar
Robert, J.-L., Della Ventura, G. and Hawthorne, EC (1999) Near-infrared study of short-range disorder of OH and F in monoclinic amphiboles. American Mineralogist, 84, 8691.CrossRefGoogle Scholar
Robinson, K., Gibbs, G.V and Ribbe, P.H. (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science, 172, 567570.CrossRefGoogle ScholarPubMed
Sheldrick, G.M. (1996). SADABS Siemens Area Detector Absorption Correction Program. University of Göttingen, Göttingen, Germany.Google Scholar
Tait, K.T., Hawthorne, EC, Grice, J.D., Ottolini, L. and Nayak, V.K. (2005) Dellaventuraite, NaNa2 (MgMn32þTi4+Li)Si8O22O2, a new anhydrous amphi-bole from the Kajlidongri Manganese Mine, Jhabua District, Madhya Pradesh, India. American Mineralogist, 90, 304309.CrossRefGoogle Scholar
Tyrna, P.L. and Guggenheim, S. (1991) The crystal structure of norrishite, KLiMn23þ.Si4O12: An oxygen-rich mica. American Mineralogist, 76, 266271.Google Scholar
Supplementary material: File

Oberti et al. supplementary material

CIF

Download Oberti et al. supplementary material(File)
File 258.9 KB