Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T06:08:22.387Z Has data issue: false hasContentIssue false

The crystal chemistry of the amphiboles II Refinement of the crystal structure of oxy-kaersutite

Published online by Cambridge University Press:  05 July 2018

F. C. Hawthorne
Affiliation:
Department of Geology, McMaster University, Hamilton, Ontario, Canada
H. D. Grundy
Affiliation:
Department of Geology, McMaster University, Hamilton, Ontario, Canada

Summary

Three-dimensional counter-diffractometer data corrected for absorption and a full matrix least-squares method have been used to refine the crystal structure of an oxy-kaersutite in the space group C2/m. The chemical composition of the amphibole is with cell parameters a 9·8920(11), b 18·064(2), c 5·3116(7)Å and β 105·388(5)°. Cation site occupancies were refined using bulk chemical constraints and the A-site positionally disordered. The final conventional R-factor for 1041 observed reflections is 4·0%.

The rotation of the tetrahedral chains in calcic clino-amphiboles is shown to be a function of the Aliv content of the tetrahedral sites. Comparison of this oxidized amphibole with an hydroxyamphibole of similar chemical composition indicates that on oxidation the maximum amount of structural relaxation takes place in the vicinity of the M(I) octahedra, which distort to a high-energy configuration.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brown, (G. E.) and Glans, (G. V.), 1970. Amer. Min., 55, 1 587-1607.Google Scholar
Clark, (J. R.), Appleman, (O. E.), and Papike, (J. J.), I969. Min. Soc. Amer. Spec. Paper, 2, 31–5.Google Scholar
Cromer, (D. T.) and Mann, (J. B.), 1968. Acta Cryst. A24, 321-4.Google Scholar
Doyle, (P. A.) and Turner, (P. S.), 1968. Ibid. 390-7.Google Scholar
Ernst, (W. G.) and WA1 (C. M.), I97O. Amer. Min., 55, 1226-58.Google Scholar
Finger, (L. W.), 1969a. Carnegie Inst. Wash. Year Book, 67, 216-17.Google Scholar
Finger, (L. W.) 1969b. Min. Soc. Amer. Spec. Paper, 2, 95–;100.Google Scholar
Hawthorne, (F. C.) and Grundy, (H. D.), I972. Nature, 235, 72-3.Google Scholar
Hawthorne, (F. C.) and Grundy, (H. D.) I973. Min. Mag., 39, 36-48.CrossRefGoogle Scholar
Hamilton, (W. C.), I965. Acta Cryst., 18, 502-10.CrossRefGoogle Scholar
Lowenstein, (W.), I954. Amer. Min., 39, 92-6.Google Scholar
Mitchell, (J. T.), Bloss, (F. D.), and Gibbs, (G. V.), 197I. Zeits. Krist., 133, 273-3oo.CrossRefGoogle Scholar
Papike, (J. J.) and Clark, (J. R.), 1968. Amer. Min., 53, 1156-73.Google Scholar
Papike, (J. J.) Ross, (M.), and Clark, (J. R.), 1969. Min. Soc. Amer. Spec. Paper, 2, 117-36.Google Scholar
Tokonami, (M.), J965. Acta C:yst.A19, 486.Google Scholar