Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T21:53:07.877Z Has data issue: false hasContentIssue false

Debattistiite, Ag9Hg0.5As6S12Te2, a new Te-bearing sulfosalt from Lengenbach quarry, Binn valley, Switzerland: description and crystal structure

Published online by Cambridge University Press:  05 July 2018

A. Guastoni
Affiliation:
Museo di Mineralogia, Universita degli Studi di Padova, Palazzo Cavalli, ViaMatteotti 30,I-35121, Padova, Italy
L. Bindi
Affiliation:
Dipartimento di Scienze della Terra, Universita degli Studi di Firenze, Via G. La Pira 4, I-50121 Firenze, Italy CNR — Istituto di Geoscienze e Georisorse, Sezione di Firenze, Via G La Pira 4, I-50121 Firenze, Italy
F. Nestola*
Affiliation:
Dipartimento di Geoscienze, Universita degli Studi di Padova, Via Gradenigo 6, I-35131 Padova, Italy

Abstract

Debattistiite, ideally Ag9Hg0.5As6S12Te2, is a new mineral (IMA-CNMNC 2011-098) from the Lengenbach quarry in the Binn Valley, Valais, Switzerland. It occurs as very rare tabular euhedral crystals up to 150 μm across in cavities in dolomitic marble, associated with realgar, rutile, trechmannite and hutchinsonite. Debattistiite is opaque with a metallic lustre and a grey streak. It is brittle; the Vickers hardness (VHN25) is 80 kg mm–2 (range: 65–94), corresponding to a Mohs hardness of 2–2½. In reflected light debattistiite is dark grey, highly bireflectant and weakly pleochroic from dark grey to a slightly greenish grey. Between crossed polars it is highly anisotropic with brownish to blue rotation tints. Internal reflections are absent. Reflectance percentages for the four COM wavelengths (Rmin and Rmax) are 27.2, 34.5 (471.1 nm), 25.5, 31.0 (548.3 nm), 22.9, 28.4 (586.6 nm), and 20.1, 25.2 (652.3 nm), respectively.

Debattistiite is triclinic, space group P1, with a = 7.832(5), b = 8.606(4), c = 10.755(5) Å, α = 95.563(9), β = 95.880(5), γ = 116.79(4)°, V = 635.3(6) Å3 and Z = 1. The crystal structure [R1 = 0.0826 for 795 reflections with I > 2σ(I)] consists of corner-sharing AsS3 pyramids forming three-membered distorted rings linked by Ag atoms in triangular or tetrahedral coordination.

The five strongest powder-diffraction lines [d in Å (I/I0) (hkl)] are as follows: 10.56 (6) (001); 3.301 (5) (12); 2.991 (4) (22); 2.742 (1) and 2.733 (10) (30). A mean of nine electron microprobe analyses gave: Ag 44.88, Hg 4.49, As 20.77, S 17.72, Te 11.82; total 99.68 wt.%, which corresponds to Ag9.02Hg0.49As6.012S11.98Te2.01, on the basis of 29.5 atoms. The new mineral is named for Luca De Battisti, a systematic mineralogist and expert on the minerals of Lengenbach quarry.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bindi, L., Evain, M. and Menchetti, S. (2006) Temperature dependence of the silver distribution in the crystal structure of natural pearceite, (Ag,Cu)16(As,Sb)2S11. Act Crystallographica, B62, 212219 CrossRefGoogle Scholar
Bindi, L., Evain, M. and Menchetti, S. (2007) Complex twinning, polytypism and disorder phenomena in the crystal structures of antimonpearceite and arsenpolybasite. The Canadia. Mineralogist, 45, 321333 CrossRefGoogle Scholar
Bindi, L., Keutsch, F.N., Francis, C.A. and Menchetti, S. (2009) Fettelite, [Ag6As2S7][Ag10HgAs2S8] from Chañarcillo, Chile: crystal structure, pseudosymmetry, twinning, and revised chemical formula. America. Mineralogist, 94, 609615 CrossRefGoogle Scholar
Bindi, L., Nestola, F., Guastoni, A. and Secco, L. (2011) The crustal structure of dalnegroite, Tl5-xPb2x (As,Sb)21-xS34: a masterpiece of structural complexity. Mineralogica. Magazine, 74, 9991012 Google Scholar
Bindi, L., Nestola, F., Guastoni, A., Zorzi, F., Peruzzo, L. and Raber T. (2012) Tellurian canfieldite, AgSn(S,Te), from Lengenbach quarry, Binntal, Canton Valais, Switzerland: occurrence, description and crustal structure. The Canadian Mineralogist, http:// dx.doi.org/10.3749/canmin.50.1.000.Google Scholar
Cook, N.J. and Ciobanu, C.L. (2003) Cervelleite, Ag4TeS, from three localities in Romania, substitution of Cu, and the occurrence of the associated phase Ag2Cu2TeS. Neues Jahrbuch für Mineralogie, Monatshefte, 2003, 321336 Google Scholar
Evain, M., Bindi, L. and Menchetti, S. (2006) Structural complexity in minerals: twinning, polytypism and disorder in the crystal structure of polybasite, (Ag,Cu)16(Sb,As)2S11. Act Crystallographica, B62, 447456 CrossRefGoogle Scholar
Graeser, S., Cannon, R., Drechsler, E., Raber, T. and Roth, P. (2008) Faszination Lengenbach Abbau- Forschung-Mineralien 1958-2008. Kristallographik Verlag, Achberg, Germany.Google Scholar
Guastoni, A. and De Battisti, L. (2006) Thalcusite. Un altro minerale di tallio scoperto a Lengenbach, Valle di Binn, Svizzera. Rivista Mineralogica Italiana, 30, 5455.Google Scholar
Helmy, H. (1999) The Um Samiuki volcanogenic Zn– Cu–Pb-Ag deposit, Eastern Desert, Egypt: a possible new occurrence of cervelleite. The Canadia. Mineralogist, 37, 143158 Google Scholar
Hofmann, B. (1994) Formation of a sulfide melt during Alpine metamorphism of the Lengenbach polymetallic sulfide mineralization, Binntal, Switzerland. Mineraliu. Deposita, 29, 439442 CrossRefGoogle Scholar
Hofmann, B. and Knill, M.D. (1996) Geochemistry and genesis of the Lengenbach Pb-Zn-As-Tl-Ba mineralisation, Binn Valley, Switzerland. Mineraliu. Deposita, 31, 319339 CrossRefGoogle Scholar
Hofmann, B., Graeser, S., Imhof, T., Sicher, V. and Stalder, H.A. (1993) Mineralogie der Grube Lengenbach, Binntal, Wallis. Zum 35-jährigen Bestehen der Arbeitsgemeinshaft Lengenbach. Jahrbuch Naturhistorische Museum der Bern, 11, 390.Google Scholar
Ibers, J.A. and Hamilton, W.C. (editors) (1974) International Tables for X-ray Crystallography, volume IV. Kynock Press, Birmingham, UK, 366 pp.Google Scholar
Karup-Møller, S. (1976) Arcubisite and mineral B - two new minerals from the cryolite deposit at Ivigtut, South Greenland. Lithos, 4, 253257 CrossRefGoogle Scholar
Kim, C.-H., Parkin, S., Bharara, M. and Atwood, D. (2002) Linear coordination of Hg(II) by cysteamine. Polyhedron, 21, 225228 CrossRefGoogle Scholar
Maslennikov, V.V. (1999) Sedimentogenesis, Halmyrolysis and Ecology of Massive Sulphide Bearing Paleohydrothermal Fields (after example of the South Urals). Geotur, Miass, Russia, 348 pp, [in Russian].Google Scholar
Matsumoto, T. and Nowacki, W. (1969) The crystal structure of trechmannite, AgAsS2. Zeitschrift fü. Kristallographie, 129, 163177 CrossRefGoogle Scholar
Nestola, F., Guastoni, A., Bindi, L. and Secco L. (2010) Dalnegroite, Tl5-xPb2x(As,Sb)21-xS34, a new thallium sulphosalt from Lengenbach quarry, Binntal, Canton Valais, Switzerland. Mineralogica. Magazine, 73, 10271032 Google Scholar
Novoselov, K.A., Belogub, E.V., Zaykov, V.V. and Yakovleva V.A. (2006) Silver sulfotellurides from volcanic-hosted massive sulfide deposits in the Southern Urals. Mineralogy an. Petrology, 87, 327349 CrossRefGoogle Scholar
Oberthür, T. and Weiser, T.W. (2008) Gold-bismuthtelluride- sulphide assemblages at the Viceroy Mine, Harare-Bindura-Shamva greenstone belt, Zimbabwe. Mineralogica. Magazine, 72, 953970 Google Scholar
Oszlányi, G. and Sü to, A. (2008) The charge flipping algorithm. Act Crstallographica, A64, 123134 CrossRefGoogle Scholar
Petříček, V., Dusek, M. and Palatinus, L. (2006) JANA2006, Structure Determination Software Programs. Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic.Google Scholar
Petruk, W., Cabri, L.J., Harris, D.C., Stewart, J.M. and Clark, L.A. (1970) Allargentum, redefined. The Canadia. Mineralogist, 10, 163172 Google Scholar
Suh, I.-K., Ohta, H. and Waseda, Y. (1988) Hightemperature thermal expansion of six metallic elements measured by dilatation method and X-ray diffraction. Journal of Material. Science, 23, 757760 Google Scholar
Van der Lee, A. and de Boer, J.L. (1993) Redetermination of the structure of hessite, Ag2Te- III. Act Crystallographica, C49, 14441446 Google Scholar
Vokes, F.M. (1971) Some aspects of the regional metamorphic mobilization of preexisting sulphide deposits. Mineraliu. Deposita, 6, 122129 CrossRefGoogle Scholar
Voudouris, P.C., Spry, P.G., Sakellaris, G.A. and Mavrogonatos, C. (2011) A cervelleite-like mineral and other Ag-Cu-Te-S minerals [Ag2CuTeS and (Ag,Cu)2TeS] in gold-bearing veins in metamorphic rocks of the Cycladic Blueschist Unit, Kallianou, Evia Island, Greece. Mineralogy an. Petrology, 101, 169183 CrossRefGoogle Scholar
Supplementary material: File

Guastoni et al. supplementary material

Cif file

Download Guastoni et al. supplementary material(File)
File 15.6 KB
Supplementary material: File

Guastoni et al. supplementary material

Structure factors file

Download Guastoni et al. supplementary material(File)
File 326.7 KB