Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-03T22:40:26.410Z Has data issue: false hasContentIssue false

Metamorphic features in Appalachian massive sulphides

Published online by Cambridge University Press:  05 July 2018

James R. Craig*
Affiliation:
Department of Geological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA

Abstract

Massive stratiform and stratabound sulphide bodies in the central Appalachians exhibit a wide variety of metamorphic features which are typical of similar deposits world-wide. The ores occur as lens- to plate-like bodies which are concordant with the enclosing meta-sediments and volcanics and are interpreted as products of Late Precambrian to Early Palaeozoic submarine volcanism. Sulphide mineralization ranges from pyritic to pyrrhotinic bodies with variable, but Zn- and Cu-dominant, base-metal contents. The deposits have been subjected to metamorphism ranging from greenschist to amphibolite grade. The metamorphism has been pervasive and has resulted in thorough recrystallization of most ores and intense deformation of pyrrhotinic ores, but does not appear to have significantly altered original sulphide assemblages. Recrystallization has homogenized most sulphide minerals including pyrite and sphalerite, so that any original compositional zoning is no longer seen. The presence of chalcopyrite has apparently promoted an increase in grain size and has facilitated post-metamorphic retrograde re-equilibration. Consequently, sphalerite geobarometry is not reliable in Cu-bearing assemblages. Pyrrhotines, mostly hexagonal, have re-equilibrated to low temperatures but commonly display pressure twins and kink-banding, apparently due to the late stages of deformation. Characteristic mineralogical changes in the host rocks include changes in the abundance of minerals, changes in the Fe: Mg ratios, and the presence of gahnite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Invited contribution.

References

Barton, P. B. (1978) Mining Geol. (Japan), 28, 293300.Google Scholar
Barton, P. B.and Skinner, B. J. (1979) In Geochemistry of Hydrothermal Ore Deposits, 2nd. edn. (Barnes, H. L., ed.), Wiley-Interscience, New York, 278403.Google Scholar
Bell, H. (1982) Econ. Geol. 77, 294311.CrossRefGoogle Scholar
Carpenter, R. H. (1974) Bull. Geol. Soc. Soc. Am. 85,451–6.2.0.CO;2>CrossRefGoogle Scholar
Cox, L. J. (1979) Mineralogy and Petrogenesis of the Arminius Deposit, Louisa County. Virginia, M.S. Thesis, Virginia Polytechnic Institute and State University. 114 pp.Google Scholar
Craig, J. R. (1980) Nor. geol. Unders. 360, 295325.Google Scholar
Craig, J. R.and Vaughan, D. J. (1981) Ore Microscopy and Ore Petrogaphy, Wiley-Interscience, New York, 409 pp.Google Scholar
Gair, J. E., and Slack, J. R. (1979) U.S. Geol. Surv. Open File Rept OF-79–1517.Google Scholar
Gair, J. E., (1980) Geol. Surv. Ireland Spec. Paper, 5, 6781.Google Scholar
Gasparrini, C. and Lowell, G. R. (1983) Geol. Assoc. Can./Mineral. Assoc. Can., Prog with Abst. 8, A25.Google Scholar
Heald-Wetlaufer, P., Foley, N. K., and Hayba, D. O. (1982) In Process Mineralogy II (Hagni, R. D., ed.), Am. Inst. Mining Metall. and Petrol. Engineers, 451–68.Google Scholar
Henry, D. K., Craig, J. R., and Gilbert, M. C. (1979) Econ. Geol. 74, 654–56.CrossRefGoogle Scholar
Hutchinson, M. N. and Scott, S. D. (1980) Nor. geol. Unders. 360, 5971.Google Scholar
Hutchinson, M. N. (1981) Econ. Geol. 76, 143–53.CrossRefGoogle Scholar
Juve, G. (1974) Sver. Geol. Unders. Ser. C. no. 706, 162 pp.Google Scholar
Kalliokoski, J. (1965) Econ. Geol. 60, 485505.CrossRefGoogle Scholar
Kelly, W. C. and Clark, B. R. (1975) Ibid. 70, 431–53.Google Scholar
Kissin, S. A., and Scott, S. D. (1982) Ibid. 77, 1739–54.Google Scholar
Kretschmar, U., and Scott, S. D. (1976) Can. Mineral, 14, 364–86.Google Scholar
Larson, L. T. (1973) Econ. Geol. 68, 671–80.CrossRefGoogle Scholar
LeHuray, A. P. (1982) Ibid. 77, 335–51.Google Scholar
McDonald, J. A. (1967) Mineral. Deposita, 2, 200–20.CrossRefGoogle Scholar
Magee, M. (1968) In Ore Deposits of the United States 1933–1967 (Ridge, J. D., ed.), Am. Inst. Mining Metall. Engrs., New York, 207–41.Google Scholar
Mauger, R. L. (1972) Econ. Geol. 67, 497510.CrossRefGoogle Scholar
Miller, J. W. (1978) The Ore Mineralogy of the Cofer Property, Louisa County, Virginia: A Volcanogenic Massive Sulfide Deposit. M. S. thesis, Virginia Polytechnic and State University.Google Scholar
Miller, J. W. and Craig, J. R. (1983) Am. Mineral. 68, 227–34.Google Scholar
Moh, G. H., and Kullerud, G. (1964) Carnegie Inst. Washington Yearb. 63, 211–13.Google Scholar
Mookherhee, A. (1976) In Handbook of Stratiform and Stratabound Ore Deposits, 4 (Wolf, K. H., ed.), Elsevier Pub. Co., 203–60.Google Scholar
Nesbitt, B. E. (1982) Econ. Geol. 77, 364–78.CrossRefGoogle Scholar
Nesbitt, B. E. and Essene, E. J. (1982) Am. J. Sci. 282, 701–29.CrossRefGoogle Scholar
Nesbitt, B. E. and Kelly, W. C. (1980) Econ. Geol. 75, 1010–21.CrossRefGoogle Scholar
Pavlides, L., Gair, J. E., and Cranford, S. L. (1982) Ibid. 77, 233–72.Google Scholar
Plimer, I. R., and Finlow-Bates, T. (1978) Mineral. Deposita, 13, 399410.Google Scholar
Sandhaus, D. J. (1981) Gahnite in Metamorphosed Volcanogenic Massive Sulfides of the Mineral District, Virginia, M.S. thesis, Virginia Polytechnic Institute and State University, 165 pp.Google Scholar
Sandhaus, D. J. and Craig, J. R. (1982) Geol. Soc. Am. Prog, with Abst.Google Scholar
Scott, S. D. (1973) Econ. Geol. 68, 466–74.CrossRefGoogle Scholar
Sandhaus, D. J. and Barnes, H. L. (1971) Ibid. 66, 653–69.Google Scholar
Both, R. A., and Kissin, S. A. (1977) Ibid. 72, 1410–25.Google Scholar
Shadlun, T. (1981) In Ore Genesis: The State of the Art (Amstutz, G. C. et al, eds.), Springer-Verlag, Berlin, 607–24.Google Scholar
Sheridan, D. M., and Raymond, W. H., (1977) U.S. Geol. Surv. Open File Rpt. 77–607, 22 pp.Google Scholar
Spry, P. G., and Scott, S. D. (1982) Geol. Assoc. Can./ Mineral. Assoc. Can. Prog with Abst. 7, 82.Google Scholar
Staten, W. T. (1976) A chemical study of the silicate minerals of the Great Gossan Lead and surrounding rocks in southwestern Virginia, M.S. thesis, Virginia Polytechnic Institute and State University, 110 pp.Google Scholar
Stow, S. H., and Tull, J. R. (1982) Econ. Geol. 77, 322–34.CrossRefGoogle Scholar
Sundblad, K. (1982) Trans. Inst. Mining Metall. 91B, 214–18.Google Scholar
Vokes, F. M. (1969) Earth Sci. Rev. 5, 99143.CrossRefGoogle Scholar
Vokes, F. M. (1973) Geol. Foren. Stockh. Förh. 195, 403–6.CrossRefGoogle Scholar
Wiggins, L. B., and Craig, J. R. (1980) Econ. Geol. 75, 742–51.CrossRefGoogle Scholar
Yui, S. (1971) Soc. Mining Geol. Japan Spec. Issue, 2 Proc. IMA-IAGOD Meeting ‘70 Joint Symposium Volume, 22–9.Google Scholar