Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T09:05:34.927Z Has data issue: false hasContentIssue false

A new graphical presentation and subdivision of potassium micas

Published online by Cambridge University Press:  05 July 2018

G. Tischendorf
Affiliation:
Bautzner Straβe 16, D-02763 Zittau, Germany
M. Rieder
Affiliation:
Department of Geochemistry, Mineralogy, and Mineral Resources, Charles University, Albertov 6, CZ-12843 Praha 2, Czech Republic
H.-J. Förster*
Affiliation:
Institute of Earth Sciences, University of Potsdam, P.O. Box 601553, D-14415 Potsdam, Germany
B. Gottesmann
Affiliation:
GeoForschungsZentrum Potsdam, Telegrafenberg, D-14473 Potsdam, Germany
Ch. V. Guidotti
Affiliation:
Department of Geological Sciences, University of Maine, Orono, ME 04469-5790, USA

Abstract

A system based on variation of the octahedrally coordinated cations is proposed for graphical presentation and subdivision of tri- and dioctahedral K micas, which makes use of elemental differences (in a.p.f.u.): (Mg – Li) [= mgli] and (Fetot + Mn + Ti – VIAl) [= feal]. All common true tri- and dioctahedral K micas are shown in a single polygon outlined by seven main compositional points forming its vertices. Sequentially clockwise, starting from Mg3 (phlogopite), these points are: Mg2.5Al0.5, Al2.1670.833, Al1.75Li1.25, Li2Al (polylithionite), Fe22+Li, and Fe32+ (annite). Trilithionite (Li1.5Al1.5), Li1.5Fe2+Al0.5, Fe22+ Mg, and Mg2Fe2+ are also located on the perimeter of the polygon. IMA-siderophyllite (Fe2+2Al) and muscovite (Al2□) plot inside.

The classification conforms with the IMA-approved mica nomenclature and differentiates among the following mica species according to their position in a diagram consisting of mgli and feal axes plotted orthogonally; trioctahedral: phlogopite, biotite, siderophyllite, annite, zinnwaldite, lepidolite and tainiolite; dioctahedral: muscovite, phengite and celadonite. Potassium micas with [Si] <2.5 a.p.f.u. including IMA-siderophyllite, KFe22+ AlAl2Si2O10(OH)2, and IMA-eastonite, KMg2AlAl2Si2O10(OH)2 seem not to form in nature.

The proposed subdivision has several advantages. All common true, trioctahedral and dioctahedral K micas, whether Li-bearing or Li-free, are shown within one diagram, which is easy to use and gives every mica composition an unambiguously defined name. Mica analyses with Fe2+, Fe3+, Fe2+ + Fe3+, or Fetot can be considered, which is particularly valuable for microprobe analyses. It facilitates easy reconstruction of evolutionary pathways of mica compositions during crystallization, a feature having key importance in petrologically oriented research. Equally important, the subdivision has great potential for understanding many of the crystal-chemistry features of the K micas. In turn this may allow one to recognize and discriminate the extent to which crystal chemistry or bulk composition controls the occurrence of some seemingly possible or hypothetical K mica.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamson, A.C. and Richards, H.G. (1990) Lowtemperature alteration of very young basalts from ODP Hole 648B: Serocki volcano, Mid-Atlantic Ridge. Proceedings of the Ocean Drilling Program, scientific results, 106/109, (Detrick, R.S., Honnorez, J., Bryan, W.B., Juteau, T. et al., editors), pp. 181–194.Google Scholar
Bailey, S.W. (1984) Crystal chemistry of the true micas. Pp. 1360 in: Micas (Bailey, S.W., editor). Reviews in Mineralogy, 13, Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Bragg, W.L. (1937) Atomic Structure of Minerals, 1st edition. Cornell University Press, USA, 292 pp.Google Scholar
Brigatti, M.F. and Guggenheim, S. (2002) Mica crystal chemistry and the influence of pressure, temperature, and solid solution on atomistic models. Pp. 197 in: Micas: Crystal Chemistry and Metamorphic Petrology (Mottana, A., Sassi, F.P., Thompson, J.B. Jr. and Guggenheim, S., editors). Reviews in Mineralogy and Geochemistry, 46, Mineralogical Society of America and the Geochemical Society, Washington D.C.Google Scholar
Brigatti, M.F., Lugli, C., Poppi, L., Foord, E.E. and Kile, D.E. (2000) Crystal chemical variations in Li- and Fe-rich micas from Pikes Peak batholith (central Colorado). American Mineralogist, 85, 12751286.CrossRefGoogle Scholar
Buckley, H.A., Bevan, J.C., Brown, K.M., Johnson, L.R. and Farmer, V.C. (1978) Glauconite and celadonite: two separate mineral species. Mineralogical Magazine, 42, 373382.CrossRefGoogle Scholar
Burt, D.M. (1991) Vector representation of lithium and other mica compositions. Pp. 113129 in: Progress in Metamorphic and Magmatic Petrology (Perchuk, L.L., editor). Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Černý, P. and Burt, D.M. (1984) Paragenesis, crystallochemical characteristics, and geochemical evolution of micas in granite pegmatites. Pp. 257297 in: Micas (Bailey, S.W., editor) Reviews in Mineralogy, 13, Mineralogical Society of America, Washington D.C.CrossRefGoogle Scholar
Foster, M.D. (1960a) Interpretation of the composition of trioctahedral micas. US Geological Survey Professional Paper, 354-B, 1149.Google Scholar
Foster, M.D. (1960b) Interpretation of the composition of lithium micas. US Geological Survey Professional Paper, 354-E, 115147.Google Scholar
Foster, M.D. (1967) Tetrasilicic dioctahedral micas – celadonite from near Reno, Nevada. U.S. Geological Survey Professional Paper, 575-C, 1722.Google Scholar
Foster, M.D. (1969) Studies of celadonite and glauconite. US Geological Survey Professional Paper, 614-F, 117.Google Scholar
Gottesmann, B. and Tischendorf, G. (1978) Klassifikation, Chemismus und Optik trioktaedrischer Glimmer. Zeitschrift für Geologische Wissenschaften, 6, 681708.Google Scholar
Guidotti, C.V. and Sassi, F.P. (1998) Petrogenetic significance of Na-K white mica mineralogy: Recent advances for metamorphic rocks. European Journal of Mineralogy, 10, 815854.CrossRefGoogle Scholar
Guidotti, C.V., Yates, M.G., Dyar, M.D. and Taylor, M.A. (1994) Petrogenetic implications of Fe3+ content of muscovite in pelitic schists. American Mineralogist, 79, 793795.Google Scholar
Hawthorne, F.C., Teertstra, D.K. and Černý, P. (1999) Crystal-structure refinement of a rubidian cesian phlogopite. American Mineralogist, 84, 778781.CrossRefGoogle Scholar
Heinrich, E.W. (1946) Studies in the mica group; the biotite-phlogopite series. American Journal of Science, 244, 836848.CrossRefGoogle Scholar
Hendricks, S.B. and Ross, C.S. (1941) Chemical composition and genesis of glauconite and celadonite. American Mineralogist, 26, 683708.Google Scholar
Kile, D.E. and Foord, E.E. (1998) Micas from the Pikes Peak Batholith and its cogenetic granitic pegmatites, Colorado: Optical properties, composition, and correlation with pegmatite evolution. The Canadian Mineralogist, 36, 463482.Google Scholar
Koval’, P.V., Kovalenko, V.I., Kuz’min, M.I., Pisarskaya, V.A. and Yurchenko, S.A. (1972) Mineral associations, composition and nomenclature of micas from rare-metal albite-bearing granitoids. Doklady Akademii Nauk SSSR, 202, 11741177 (in Russian).Google Scholar
Lapides, I.L., Kovalenko, V.I. and Koval’, P.V. (1977) The Micas of Rare-Metal Granitoids. Nauka, Novosibirsk, Russia, 103 pp. (in Russian).Google Scholar
Li, G., Peacor, D.R., Coombs, D.S. and Kawachi, Y. (1997) Solid solution in the celadonite family: The new minerals ferroceladonite, K2Fe2+ 2Fe3+ 2 Si8O20(OH)4, and ferroaluminoceladonite, K2Fe2+ 2 Al2Si8O20(OH)4 . American Mineralogist, 82, 503–51.CrossRefGoogle Scholar
Livi, K.J.T. and Veblen, D.R. (1987) ‘Eastonite’ from Easton, Pennsylvania: A mixture of phlogopite and a new form of serpentine. American Mineralogist, 72, 113125.Google Scholar
Loewenstein, W. (1954) The distribution of aluminum in the tetrahedra of silicates and aluminates. American Mineralogist, 39, 9296.Google Scholar
Massonne, H.-J. and Schreyer, W. (1986) High-pressure syntheses and X-ray properties of white micas in the system K2O-MgO-Al2O3-SiO2-H2O. Neues Jahrbuch für Mineralogie Abhandlungen, 153, 177215.Google Scholar
Monier, G. and Robert, J.-L. (1986) Evolution of the miscibility gap between muscovite and biotite solid solutions with increasing lithium content: an experimental study in the system K2O-Li2O-MgOFeO- Al2O3-SiO2-H2O-HF at 600°C, 2 kbar PH2O: comparison with natural lithium micas. Mineralogical Magazine, 50, 641651.CrossRefGoogle Scholar
Nickel, E.H. and Grice, J.D. (1998) The IMA Commission on New Minerals and Mineral Names: Procedures and guidelines on mineral nomenclature, 1998. The Canadian Mineralogist, 36, 913926.Google Scholar
Pesquera, A., Torres-Ruiz, J., Gil-Crespo, P.P. and Velilla, N. (1999) Chemistry and genetic implications of tourmaline and Li-F-Cs micas from the Valdeflores area (C<ceres, Spain). American Mineralogist, 84, 5569.CrossRefGoogle Scholar
Rieder, M. (1970) Chemical composition and physical properties of lithium-iron micas from the Krušné hory Mts. (Erzgebirge). Part A: Chemical composition. Contributions to Mineralogy and Petrology, 27, 131158.Google Scholar
Rieder, M. (1971) Stability and physical properties of synthetic lithium-iron micas. American Mineralogist, 56, 256280.Google Scholar
Rieder, M. (2001) Mineral nomenclature in the mica group: the promise and the reality. European Journal of Mineralogy, 13, 10091012.CrossRefGoogle Scholar
Rieder, M., Cavazzini, G., D’yakonov, Yu.S., Frank-Kamenetskii, V.A., Gottardi, G., Guggenheim, S., Koval’, P.V., Müller, G., Neiva, A.M.R., Radoslovich, E.W., Robert, J.-L., Sassi, F.P., Takeda, H., Weiss, Z. and Wones, D.R. (1998) Nomenclature of the micas. The Canadian Mineralogist, 36, 905912.Google Scholar
Schaller, W.T., Carron, M.K. and Fleischer, M. (1967) Ephesite, Na(LiAl2)(Al2Si2)O10(OH)2, a trioctahedral member of the margarite group, and related brittle micas. American Mineralogist, 52, 16891696.Google Scholar
Schmidt, M.W., Dugnani, M. and Artioli, G. (2001) Synthesis and characterization of white micas in the join muscovite-aluminoceladonite. American Mineralogist, 86, 555565.CrossRefGoogle Scholar
Semenov, E. (2001) Notes on ephesite, terskite, Nakomarovite, ceriopyrochlore-(Ce), joaquinite-(Ce) and other minerals from the Ilímaussaq alkaline complex, South Greenland. Geology of Greenland Survey Bulletin, 190, 123125.CrossRefGoogle Scholar
Semenov, E.I. and Shmakin, B.M. (1988) On the composition of mica rocks in exocontacts of raremetal pegmatites from the Bastar area (India). Doklady Akademii Nauk SSSR, 303, 199202 (in Russian).Google Scholar
Sun, S. and Yu, J. (1999) Fe-Li micas: a new approach to the substitution series. Mineralogical Magazine, 63, 933945.Google Scholar
Sun, S. and Yu, J. (2000) Actual Fe-Li mica series as a series with ?VI constant but not with AlIV or AlVI. Mineralogical Magazine, 64, 755775.Google Scholar
Teagle, D.A.H., Alt, J.C., Bach, W., Halliday, A.N. and Erzinger, J. (1996) Alteration of upper oceanic crust in a ridge-flank hydrothermal upflow zone: mineral, chemical, and isotopic constraints from hole 896A. Proceedings of the Ocean Drilling Program, scientific results, 148 (Alt, J.C., Kinoshita, H., Stokking, I.B. and Michael, P.J., editors), pp. 119150.Google Scholar
Thompson, J.B. (1982) Composition space: an algebraic and geometr ic approach. Pp. 131 in: Characterization of Metamorphism through Mineral Equilibria (Ferry, J.M., editor). Reviews in Mineralogy, 10, Mineralogical Society of America, Washington D.C.Google Scholar
Tindle, A.G. and Webb, P.C. (1990) Estimation of lithium contents in trioctahedral micas using microprobe data: application to micas from granitic rocks. European Journal of Mineralogy, 2, 595610.CrossRefGoogle Scholar
Tischendorf, G., Gottesmann, B., Förster, H.-J. and Trumbull, R.B. (1997) On Li-bearing micas: estimating Li from electron microprobe analysis and an improved diagram for graphical representation. Mineralogical Magazine, 61, 809834.CrossRefGoogle Scholar
Tischendorf, G., Förster, H.-J. and Gottesmann, B. (1999) The correlation between lithium and magnesium in trioctahedral micas: Improved equations for Li2O estimation from MgO data. Mineralogical Magazine, 63, 5774.CrossRefGoogle Scholar
Tischendorf, G., Förster, H.-J. and Gottesmann, B. (2001a) Minor- and trace-element composition of trioctahedral micas: a review. Mineralogical Magazine, 65, 249–76.CrossRefGoogle Scholar
Tischendorf, G., Förster, H.-J. and Gottesmann, B. (2001b) Tri- und dioktaedrische Glimmer: ein komplexes chemisches System. Zeitschrift für Geologische Wissenschaften, 29, 275298.Google Scholar
Tröger, W.E. (1962) U¨ ber Protholithionit und Zinnwaldit – Ein Beitrag zur Kenntnis von Chemismus und Optik der Lithiumglimmer. Beitra¨ge zur Mineralogie und Petrologie, 8, 418431.Google Scholar
Ukai, Y., Nishimura, S. and Hashimoto, Y. (1956) Chemical studies of lithium micas from the pegmatite of Minagi, Okayama Prefecture. Mineralogical Journal, 2, 2738.CrossRefGoogle Scholar
Wise, W.S. and Eugster, H.P. (1964) Celadonite: Synthesis, thermal stability and occurrence. American Mineralogist, 49, 10321083.Google Scholar
Yavuz, F. (2001) LIMICA: a program for estimating Li from electron-microprobe mica analyses and classifying trioctahedral micas in terms of composition and octahedral site occupancy. Computers & Geosciences, 27, 215227.CrossRefGoogle Scholar
Yavuz, F. (2003a) Evaluating micas in petrologic and metallogenic aspects: Part I – Definitions and structure of the computer program MICA+. Computers & Geosciences, 29, 12031213.CrossRefGoogle Scholar
Yavuz, F. (2003b) Evaluating micas in petrologic and metallogenic aspects: Part II –Applications using the computer program MICA+. Computers & Geosciences, 29, 12151228.CrossRefGoogle Scholar
Zhang, M., Suddaby, P., Thompson, R.N. and Dungan, M.A. (1993) Barian titanian phlogopite from potassic lavas in northeast China: Chemistry, substitutions, and paragenesis. American Mineralogist, 78, 10561065.Google Scholar