Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-08T13:19:59.888Z Has data issue: false hasContentIssue false

Petrogenesis of alnöitic rocks from Malaita, Solomon Islands, Melanesia

Published online by Cambridge University Press:  05 July 2018

Peter H. Nixon
Affiliation:
Geology Department, P.O. Box 4820, University, Papua New Guinea
Roger H. Mitchell
Affiliation:
Geology Department, Lakehead University, Thunder BayOntarioCanada
Nicholas W. Rogers
Affiliation:
University of London Reactor Centre, SunninghillAscotBerksU.K.

Summary

Aphanitic and fragmental alnöitic rocks from Malaita contain ultrabasic xenoliths and discrete nodules (megacrysts) of pyroxenes and garnets. Primary minerals in the alnöites are olivine (Fo85), clinopyroxene (diopside-sahlite), natro-melilite (1/3 melilite-2/3 åkermanite), phlogopite (1–9% TiO2), perovskite, spinel (ulvö spinel-magnetite series) and accessory nepheline, melanite, and apatite. Alnöite olivines and clinopyroxenes are compositionally different from those phases in the xenoliths and megacrysts. Rare earth element distribution patterns are linear and indicate strong enrichment in the light rare earths (La/Yb = 42−49). The alnöites are possible primary melts of a pyrolite-type mantle formed by approximately 4% partial melting at depths greater than 120 km, under high carbon dioxide pressures. Despite containing a mantle xenolith assemblage similar to that found in kimberlites, the host Malaita rocks are minera-logically and geochemically different from kimberlite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, (J. B.) and Deans, (T.), 1965. Ultrabasic eruptives with aln6itic-kimberlitic affinities from Malaita, Solomon Islands. Mineral. Mag. 34, 16-34.Google Scholar
Bradshaw, (N.), 1968. Petrographic examination of seven ultrabasic eruptive rocks and one limestone from Malaita, British Solomon Islands. British Solomon Islands Geol. Rec. (1963-7), III, 51-3.Google Scholar
Carmichael, (I. S. E.), 1967. The iron titanium oxides of salic volcanic rocks and their associated ferromag-nesian silicates. Contrib. Mineral. Petrol. 14, 36-44.CrossRefGoogle Scholar
Coleman, (P. J.), 1968. Upper Cretaceous deep water pelagic sediments from Northern Malaita. British Solomon Islands Geol. Rec. (1963-7), III, 53-8.Google Scholar
Davis, (G. L.), 1977. The ages and uranium contents of zircons from kimberlites and associated rocks. Extended Abstr. Second Intern. Kimberlite Conf., Santa Fe, New Mexico.Google Scholar
Dawson, (J. B.), Delaney, (J. S.), and Smith, (J. V.), 1978. Aspects of the mineralogy of aln6itic breccia, Malaita, Solomon Islands. Contrib. Mineral. Petrol. 67, 189-95.CrossRefGoogle Scholar
Ei Goresy, (A.) and Yoder, (H. S.), 1974. Natural and synthetic melilite compositions. Carnegie Inst. Washington, Year Book. 73, 359-71.Google Scholar
Ferguson, (J.), Danchin, (R. V.), and Nixon, (P. H.), 1973. Petrochemistry of kimberlite autoliths. In: Lesotho Kimberlites, Nixon, P. H., ed., Lesotho National Development Corp. Maseru, Lesotho, 285-93.Google Scholar
Fesq, (H. W.), Kable, (E. J. D.), and Gurney, (J. J.), 1975. Aspects of the geochemistry of kimberlites from the Premier mine, and other selected South African occurrences with particular reference to the rare earth elements. Phys. Chem. Earth. 9, 687-707.CrossRefGoogle Scholar
Frey, (F. A.), Green, (D. H.), and Roy, (S. D.), 1978. Integrated models of basalt petrogenesis. A study of quartz tholeiites to olivine melilitites from S.E. Australia utilising geochemical and experimental petrological data. J. Petrol. 19, 463-513.CrossRefGoogle Scholar
Irving, (A. J.), 1974. Megacrysts from the newer basalts and other basaltic rocks of Southeastern Australia. Bull. Geol. Soc. Am. 85, 1503-14.2.0.CO;2>CrossRefGoogle Scholar
Kroenke, (L.), 1972. Geology of the Ontong Java Plateau. Hawaii Inst. Geophys. Rep. HIG-72-5, Univ. Hawaii.Google Scholar
Mathias, (M.), 1949. Olivine from South African melilite-basalts. Mineral. Mag. 28, 486-91.Google Scholar
Mitchell, (R. H.), 1979. The alleged kimberlite-carbonatite relationship: additional contrary mineralogical evidence. Am. J. Sci. 279, 570-89.CrossRefGoogle Scholar
Mitchell, (R. H.) and Bell, (K.), 1976. Rare earth element geochemistry of potassic lavas from the Birunga and Toro-Ankole regions of Uganda, Africa. Contrib. Mineral. Petrol. 58, 293-303.CrossRefGoogle Scholar
Mitchell, (R. H.) and Brunfelt, (A. E.), 1975. Rare earth geochemistry of kimberlite. Phys. Chem. Earth. 9, 671-86.CrossRefGoogle Scholar
Nixon, (P. H.) and Boyd, (F. R.), 1979. Garnet-bearing lherzolites and discrete nodules from the Malaita alnöite, Solomon Islands, S.W. Pacific, and their bearing on oceanic mantle composition and geotherm. In: Proc. 2nd Intern. Kimberlite Confr. , Boyd, F. R. and Meyers, H. O. A., eds., Amer. Geophys. Union, 3400-23.Google Scholar
Nixon, (P. H.) and Coleman, (P.J.), 1978. Garnet-bearing lherzolites and discrete nodules suites from the Malaita alnoite, Solomon Islands, and their bearing on the nature and origin of the Ontong Java Plateau. Bull. Aust. Soc. Expl. Geophys. 9, 103-6.CrossRefGoogle Scholar
Rickwood, (R. K.), 1957. Geology of the Island of Malaita. In: Marshall, C. E., et al. , Univ. Sydney, Dept. Geology and Geophysics. Colon. Geol. Mineral. Res. 6, 300-5.Google Scholar
Scott, (P. W.), 1976. Crystallisation trends of pyroxenes from alkaline volcanic rocks of Tenerife, Canary Islands. Mineral. Mag. 40, 805-16.CrossRefGoogle Scholar
Sun, (S. S.) and Hanson, (G. N.), 1975. Origin of Ross Island basanitoids and limitations upon the hetero-geneity of mantle sources for alkali basalts and nephe-linites. Contrib. Mineral. Petrol. 52, 77-106.CrossRefGoogle Scholar
Velde, (D.) and Yoder, (H. S.), 1976. The chemical composition of melilite-bearing eruptive rocks. Carnegie Inst. Washington Year Book. 75, 574-80.Google Scholar