Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T21:56:03.616Z Has data issue: false hasContentIssue false

The role of Th-U minerals in assessing the performance of nuclear waste forms

Published online by Cambridge University Press:  05 July 2018

G. R. Lumpkin*
Affiliation:
Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
Yan Gao
Affiliation:
Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
R. Gieré
Affiliation:
Institute of Earth and Environmental Sciences Geochemistry, University of Freiburg, Albertstrasse 23-B, Freiburg, D-79104, Germany
C. T. Williams
Affiliation:
Department of Mineralogy, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
A. N. Mariano
Affiliation:
48 Page Brook Road, Carlisle, MA 10741, Massachusetts, USA
T. Geisler
Affiliation:
Steinmann Institute, University of Bonn, Bonn, D-53012, Germany
*
** E-mail: grl@ansto.gov.au

Abstract

Materials designed for nuclear waste disposal include a range of ceramics, glass ceramics and glass waste forms. Those with crystalline phases have provided the momentum for studies of minerals as a means to understand aspects of waste-form crystal chemistry, behaviour in aqueous systems and radiation damage over geological periods of time. Although the utility of natural analogue studies varies, depending upon the degree of analogy to the proposed geological repository and other factors such as chemical composition, the available data suggest that Th-U host phases such as brannerite, monazite, pyrochlore, zircon and zirconolite are resistant generally to dissolution in aqueous fluids at low temperatures. Geochemical durability may or may not extend to hydrothermal systems depending on the specifics of fluid composition, temperature and pressure. At elevated temperatures, for example, davidite may break down to new phase assemblages including titanite, ilmenite and rutile. Perovskite is generally less resistant to dissolution at low temperatures and breaks down to TiO2, releasing A-site cations to the aqueous fluid. Studies of radiation damage indicate that the oxide and silicate phases become amorphous as a result of the gradual accumulation of alpha-recoil collision cascades. Monazite tends to remain crystalline on geological time scales, a very attractive property that potentially eliminates major changes in physical properties such as density and volume, thereby reducing the potential for cracking, which is a major concern for zircon. In spite of recent success in describing the behaviour of Th-U minerals in geological systems, considerable work remains in order to understand the P-T-X conditions during alteration and T-t history of the host rocks.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Banfield, J.F., and Veblen, D.R., (1992) Conversion of perovskite to anatase and TiO2 (B): A TEM study and the use of fundamental building blocks for understanding relationships among the TiO2 minerals. American Mineralogist, 77, 545557.Google Scholar
Bates, J.K., Ebert, W.L., Feng, X. and Bourcier, W.L., (1992) Issues affecting the prediction of glass reactivity in an unsaturated environment. Journal of Nuclear Materials, 190, 198227.CrossRefGoogle Scholar
Begg, B.D., (2003) Titanate ceramic matrices for nuclear waste immobilisation. Research Advances in Ceramics, 1, 4962.Google Scholar
Boatner, L.A., (2002) Synthesis, structure, and properties of monazite, pretulite, and xenotime, Pp. 87122 in: Phosphates: Geochemical, Geobiological, and Materials Importance (M.J. Kohn, J. Rakovan and J.M. Hughes, editors). Reviews in Mineralogy & Geochemistry, 48. Mineralogical Society of America, Washington, DC.Google Scholar
Boatner, L.A., and Sales, B.C., (1988) Monazite. Pp. 495564 in: Radioactive Waste Forms for the Future (W. Lutze and R.C. Ewing, editors). North- Holland, Amsterdam.Google Scholar
Bulakh, A.G., Nesterov, A.R., Williams, C.T., and Anisimov, I.S., (1998) Zirkelite from the Sebl’ yavr carbonatite complex, Kola peninsula, Russia: an X-ray and electron microprobe study of a partially metamict mineral. Mineralogical Magazine, 62, 837846.CrossRefGoogle Scholar
Burakov, B.E., Yagovkina, M.A., Garbuzov, V.M., Kitsay, A.A., and Zirlin, V.A., (2004) Self-irradiation of monazite ceramics – contrasting behavior of PuPO4 and (La,Pu)PO4 doped with Pu-238. Pp. 219224 in: Scientific Basis for Nuclear Waste Management XXVIII. Materials Research Society Symposium Proceedings (J.M. Hanchar, S. Stroes- Gascoyne and L. Browning, editors), 824. Materials Research Society, Warrendale, Pennsylvania, USA.Google Scholar
Campbell, I.H., and Kelly, P.R., (1978) The geochemistry of loveringite, a uranium-rare-earth-bearing accessory phase from the Jimberlana Intrusion of Western Australia. Mineralogical Magazine, 42, 187193.CrossRefGoogle Scholar
Chakhmouradian, A.R., and Mitchell, R.H., (1998) Lueshite, pyrochlore and monazite-(Ce) from apatite- dolomite carbonatite, Lesnaya Varaka complex, Kola Peninsula, Russia. Mineralogical Magazine, 62, 769782.CrossRefGoogle Scholar
Chakhmouradian, A.R., Mitchell, R.H., Pankov, A.V., and Chukanov, N.V., (1999) Loparite and ‘metaloparite’ from the Burpala alkaline comples, Baikal Alkaline Province (Russia). Mineralogical Magazine, 63, 519534.CrossRefGoogle Scholar
Chakoumakos, B.C., (1984) Systematics of the pyrochlore structure type, ideal A2B2X6Y. Journal of Solid State Chemistry, 53, 120129.CrossRefGoogle Scholar
Chakoumakos, B.C., Murakami, T., Lumpkin, G.R., and Ewing, R.C., (1987) Alpha-decay induced fracturing in zircon: The transition from the crystalline to the metamict state. Science, 236, 15561559.CrossRefGoogle ScholarPubMed
Chakoumakos, B.C., Oliver, W.C., Lumpkin, G.R., and Ewing, R.C., (1991) Hardness and elastic modulus of zircon as a function of heavy-particle irradiation dose: I. In situ alpha-decay event damage. Radiation Effects and Defects in Solids, 118, 393403.CrossRefGoogle Scholar
Clarke, D.R., Jantzen, C.M., and Harker, A.B., (1982) Dissolution of tailored ceramic nuclear waste forms. Nuclear and Chemical Waste Management, 3, 5966.CrossRefGoogle Scholar
Clinard, F.W. Jr., Peterson, D.E., Rohr, D.L., and Hobbs, L.W., (1984a) Self-irradiation effects in 238Pu-substituted zirconolite I. temperature dependence of damage. Journal of Nuclear Materials, 126, 245254.CrossRefGoogle Scholar
Clinard, F.W. Jr., Rohr, D.L., and Roof, R.B., (1984b) Structural damage in a self-irradiated zirconolitebased ceramic. Nuclear Instruments and Methods in Physics Research B, 1, 581586.CrossRefGoogle Scholar
Cuney, M. and Mathieu, R. (2000) Extreme light rareearth element mobilisation by diagenetic fluids in the geological environment of the Okla natural reactor zones, Franceville basin, Gabon. Geology, 28, 743746.2.0.CO;2>CrossRefGoogle Scholar
De Vito, C., Pezzotta, F., Ferrini, V. and Aurisicchio, C. (2006) Nb-Ti-Ta oxides in the gem-mineralized and "hybrid" Anjanabonoina granitic pegmatite, central Madagascar: a record of magmatic and postmagmatic events. The Canadian Mineralogist, 44, 87103.CrossRefGoogle Scholar
Ellsworth, S., Navrotsky, A. and Ewing, R.C., (1994) Energetics of radiation damage in natural zircon (ZrSiO4). Physics and Chemistry of Minerals, 21, 140149.CrossRefGoogle Scholar
Ewing, R.C., (1999) Less geology in the geological disposal of nuclear waste. Science, 286, 415417.CrossRefGoogle Scholar
Ewing, R.C., Haaker, R.F., and Lutze, W. (1982) Leachability of zircon as a function of alpha dose. Pp. 389397 in: Scientific Basis for Nuclear Waste Management V (W. Lutze, editor). Elsevier, New York.Google Scholar
Ewing, R.C., Lutze, W. and Webber, W.J., (1995) Zircon: a host-phase for the disposal of weapons plutonium. Journal of Materials Research, 10(2), 243246.CrossRefGoogle Scholar
Ewing, R.C., Weber, W.J., and Lian, J. (2004) Nuclear waste disposal – pyrochlore (A2B2O7): nuclear waste form for the immobilization of plutonium and “minor” actinides. Journal of Applied Physics, 95, 59495971.CrossRefGoogle Scholar
Farges, F. (1997) Five fold-coordinated Ti 4+ in metamict zirconolite and titanite: a new occurrence shown by Ti K-edge XANES spectroscopy. American Mineralogist, 82, 4450.CrossRefGoogle Scholar
Farges, F., Ewing, R.C., and Brown, G.E., (1993) The structure of aperiodic, metamict (Ca,Th)ZrTi2O7 (zirconolite): an EXAFS study of the Zr T. , and U sites. Journal of Materials Research, 8, 19831995.CrossRefGoogle Scholar
Farnan, I. and Salje, K.H., (2001) The degree and nature of radiation damage in zircon observed by 29Si nuclear magnetic resonance. Journal of Applied Physics, 89, 20842090.CrossRefGoogle Scholar
Förster, H.J., (1998) The chemical composition of REEY- Th-U-rich accessory minerals in peraluminous granites of the Erzgebirge-Fichtelgebirge region, Germany, Part I: The monazite-(Ce)-brabantite solid solution series. American Mineralogist, 83, 259272.CrossRefGoogle Scholar
Forsyth, R.S., and Werme, L.O., (1992) Spent fuel corrosion and dissolution. Journal of Nuclear Materials, 190, 319.CrossRefGoogle Scholar
Frondel, C. (1958) Systematic mineralogy of uranium and thorium. U.S. Geological Survey Bulletin, 1064, 400.Google Scholar
Gatehouse, B.M., Grey, I.E., Campbell, I.H., and Kelly, P.R., (1978) The crystal structure of loveringite – a new member of the crichtonite group. American Mineralogist, 63, 2836.Google Scholar
Gatehouse, B.M., Grey, I.E., and Kelly, P.R., (1979) The crystal structure of davidite. American Mineralogist, 64, 10101017.Google Scholar
Geisler, T., Ulonska, M., Schleicher, H., Pidgeon, R.T., and van Bronswijk, W. (2001) Leaching and differential recrystallization of metamict zircon under experimental hydrothermal conditions. Contributions to Mineralogy and Petrology, 141, 5365.CrossRefGoogle Scholar
Geisler, T., Rashwan, A.A., Rahn, M., Poller, U., Zwingmann, H., Pidgeon, R.T., Schleicher, H. and Tomaschek, F. (2003) Low-temperature hydrothermal alteration of natural metamict zircons from the Eastern Desert, Egypt. Mineralogical Magazine, 67, 485508.CrossRefGoogle Scholar
Gieré, R., Williams, C.T., and Lumpkin, G.R., (1998) Chemical characteristics of natural zirconolite. Schweizerische Mineralogische und Petrographische Mitteilungen, 78, 433459.Google Scholar
Gieré, R., Buck, E.C., Guggenheim, R., Mathys, D., Reusser, E. and Marques, J. (2001) Alteration of Uranium-rich microlite. Pp. 935944 in: Scientific Basis for Nuclear Waste Management XXIV. Materials Research Society Symposium Proceedings (K.P. Hart and G.R. Lumpkin, editors), 663. Materials Research Society, Warrendale, Pennsylvania, USA.Google Scholar
Gong, W.L., Ewing, R.C., Wang, L.M., and Xie, H.S., (1995) Crichtonite structure type (AM21O38 and A2M19O36) as a host phase in crystalline waste form ceramics. Materials Research Society Symposium Proceedings, 353, 807815.CrossRefGoogle Scholar
Graeser, S. and Guggenheim, R. (1990) Brannerite from Lengenbach, Binntal (Switzerland). Schweizerische Mineralogische und Petrographische Mitteilungen, 70, 325331.Google Scholar
Grambow, B. (1994) Borosilicate glass: Future research requirements or “What we don’t know”. MRS Bulletin, XIX(12), 2023.CrossRefGoogle Scholar
Grey, I.E., and Gatehouse, I.E., (1978) The crystal structure of landauite, Na[MnZn2(Ti,Fe)6Ti12]O38. The Canadian Mineralogist, 16, 6368.Google Scholar
Grey, I.E., Lloyd, D.J., and White, J.S. Jr., (1976) The structure of crichtonite and its relationship to senaite. American Mineralogist, 61, 12031212.Google Scholar
Hansmann, W. (1996) Age determinations on the Tertiary Masino–Bregaglia (Bergell) intrusives (Italy, Switzerland): a review. Schweizerische Mineralogische und Petrographische Mitteilungen, 76, 421451.Google Scholar
Harker, A.B., (1988) Tailored ceramics. Pp. 335392 in: Radioactive Waste Forms for the Future. (W. Lutze and R.C. Ewing, editors). North-Holland, Amsterdam.Google Scholar
Hart, K.P., Lumpkin, G.R., Gieré, R., Williams, C.T., McGlinn, P.J., and Payne, T.E., (1996) Naturally occurring zirconolites – analogues for the long-term encapsulation of actinides in Synroc. Radiochimica Acta, 74, 309312.CrossRefGoogle Scholar
Hawthorne, F.C., Groat, L.A., Raudsepp, M., Ball, N.A., Kimata, M., Spike, F.D., Gaba, R., Halden, N.M., Lumpkin, G.R., Ewing, R.C., Greegor, R.B., Lytle, F.W., Ercit, T.S., Rossman, G.R., Wicks, F.J., Ramik, R.A., Sherriff, B.L., Fleet, M.E., and McCammon, C. (1991) Alpha-decay damage in titanite. American Mineralogist, 76, 370396.Google Scholar
Hecht, L. and Cuney, M. (2000) Hydrothermal alteration of monazite in the Precambrian crystalline basement of the Athabasca Basin (Saskatchewan, Canada): Implications for the formation of unconformityrelated uranium deposits. Mineralium Deposita, 35, 791795.CrossRefGoogle Scholar
Hetherington, C.J., and Harlov, D.E., (2008) Metasomatic thorite and uraninite inclusions in xenotime and monazite from granitic pegmatites, Hidra anorthosite massif, southwestern Norway: mechanics and fluid chemistry. American Mineralogist, 93, 806820.CrossRefGoogle Scholar
Holland, H.D., and Gottfried, D. (1955) The effect of nuclear radiation on the structure of zircon. Acta Crystallographica, 8, 291300.CrossRefGoogle Scholar
Hurley, P.M., and Fairbairn, H.W., (1953) Radiation damage in zircon: a possible age method. Geological Society of America Bulletin, 64, 659674.CrossRefGoogle Scholar
Icenhower, J.P., Strachan, D.M., McGrail, B.P., Scheele, R.D., Rodriquez, E.A., Steele, J.L., and Legore, V.L., (2006) Dissolution kinetics of pyrochlore ceramics for the disposition of plutonium. American Mineralogist, 91, 3953.CrossRefGoogle Scholar
Isobe, H., Murakami, T. and Ewing, R.C., (1992) Alteration of uranium minerals in the Koongarra deposit, Australia: Unweathered zone. Journal of Nuclear Materials, 190, 174187.CrossRefGoogle Scholar
Janeczek, J. and Ewing, R.C., (1992) Structural formula of uraninite. Journal of Nuclear Materials, 190, 128132.CrossRefGoogle Scholar
Jensen, M., Lam, T., Luhowy, D., McLay, J., Semec, B. and Frizzell, R. (2009) Overview of Ontario power generation’s proposed L&ILW deep geologic repository Bruce site, Tiverton, Ontario. Pp. 149150 in: Proceedings of the 3rd Canus Rock Mechanics Symposium (M. Diederichs and G. Grasselli, editors). Toronto, Canada.Google Scholar
Johnson, L.H., and Werme, L.O., (1994) Materials characteristics and dissolution behaviour of spent nuclear fuel. MRS Bulletin, XIX(12), 2427.CrossRefGoogle Scholar
King, F., Ahonen, L., Taxén, C., Vuorinen, U. and Werme, L. (2002) Copper Corrosion Under Expected Conditions in a Deep Geologic Repository. Report POSIVA 2002-01, Posiva Oy, Helsinki, 184 pp.Google Scholar
Kynicky, J., Smith, M.P., and Xu, C. (2012) Diversity of rare earth deposits: The key example of China. Elements, 8, 361367.CrossRefGoogle Scholar
Lumpkin, G.R., (1989) Alpha-decay damage, geochemical alteration, and crystal chemistry of natural pyrochlores. Unpublished PhD Dissertation, University of New Mexico, USA.Google Scholar
Lumpkin, G.R., (1999) Physical and chemical characteristics of baddeleyite (monoclinic zirconia) in natural environments: an overview and case study. Journal of Nuclear Materials, 274, 206217.CrossRefGoogle Scholar
Lumpkin, G.R., (2001) Alpha-decay damage and aqueous durability of actinide host phases in natural systems. Journal of Nuclear Materials, 289, 136166.CrossRefGoogle Scholar
Lumpkin, G.R., (2006) Ceramic waste forms for actinides. Elements, 2, 365372.CrossRefGoogle Scholar
Lumpkin, G.R., and Chakoumakos, B.C., (1988) Chemistry and radiation effects of thorite group minerals from the Harding pegmatite, Taos County, New Mexico. American Mineralogist, 73, 14051419.Google Scholar
Lumpkin, G.R., and Ewing, R.C., (1988) Alpha-decay damage in minerals of the pyrochlore group. Physics and Chemistry of Minerals, 16, 220.CrossRefGoogle Scholar
Lumpkin, G.R., and Ewing, R.C., (1992) Geochemical alteration of pyrochlore group minerals: Microlite subgroup. American Mineralogist, 77, 179188.Google Scholar
Lumpkin, G.R., and Ewing, R.C., (1995) Geochemical alteration of pyrochlore group minerals: pyrochlore subgroup. American Mineralogist, 80, 732743.CrossRefGoogle Scholar
Lumpkin, G.R., and Ewing, R.C., (1996) Geochemical alteration of pyrochlore group minerals: Betafite subgroup. American Mineralogist, 81, 12371248.CrossRefGoogle Scholar
Lumpkin, G.R., and Geisler-Wierwille, T., (2012) Minerals and natural analogues. Pp. 563600 in: Comprehensive Nuclear Materials, 5 (R.J.M. Konings, editor). Elsevier, Amsterdam.Google Scholar
Lumpkin, G.R., and Mariano, A.N., (1996) Natural occurrence and stability of pyrochlore in carbonatites, related hydrothermal systems, and weathering environments. Pp. 831838 in: Scientific Basis for Nuclear Waste Management XIX. Materials Research Society Symposium Proceedings (W.M. Murphy and D.A. Knecht, editors). 412. Materials Research Society, Warrendale, Pennsylvania, USA.Google Scholar
Lumpkin, G.R., Chakoumakos, B.C., and Ewing, R.C., (1986) Mineralogy and radiation effects of microlite from the Harding pegmatite, Taos County, New Mexico. American Mineralogist, 71, 569588.Google Scholar
Lumpkin, G.R., Smith, K.L., and Blackford, M.G., (1991) Electron microscope study of Synroc before and after exposure to aqueous solutions. Journal of Materials Research, 6, 22182233.CrossRefGoogle Scholar
Lumpkin, G.R., Hart, K.P., McGlinn, P.J., Payne, T.E., Gieré, R. and Williams, C.T., (1994) Retention of actinides in natural pyrochlore and zirconolites. Radiochimica Acta, 66/67, 469474.Google Scholar
Lumpkin, G.R., Smith, K.L., and Blackford, M.G., (1995) Partitioning of uranium and rare earth elements in Synroc: effect of impurities, metal additive, and waste loading. Journal of Nuclear Materials, 224, 3142.CrossRefGoogle Scholar
Lumpkin, G.R., Smith, K.L., and Gieré, R. (1997) Application of analytical electron microscopy to the study of radiation damage in the complex oxide mineral zirconolite. Micron, 28, 5768.CrossRefGoogle Scholar
Lumpkin, G.R., Colella, M., Smith, K.L., Mitchell, R.H., and Larsen, A.O., (1998) Chemical composition, geochemical alteration, and radiation effects in natural perovskite. Pp. 207214 in: Scientific Basis for Nuclear Waste Management XXI. Materials Research Society Symposium Proceedings (I.G. McKinley and C. McCombie, editors), 506. Materials Research Society, Warrendale, Pennsylvania, USA.Google Scholar
Lumpkin, G.R., Day, R.A., McGlinn, P.J., Payne, T.E., Gieré, R. and Willaims, C.T., (1999) Investigation of the long-term performance of betafite and zirconolite hydrothermal veins from Adamello, Italy. Pp. 793800 in: Scientific Basis for Nuclear Waste Management XXII. Materials Research Society Symposium Proceedings (D.J. Wronkiewicz and J.H. Lee, editors), 556. Materials Research Society, Warrendale, Pennsylvania, USA.Google Scholar
Lumpkin, G.R., Leung, S.H.F. and Colella, M. (2000) Composition, geochemical alteration, and alphadecay damage effects of natural brannerite. Pp. 5568 in: Scientific Basis for Nuclear Waste Management XXIII. Materials Research Society Symposium Proceedings (R.W. Smith and D.W. Shoesmith, editors). 608. Materials Research Society, Warrendale, Pennsylvania, USA.Google Scholar
Lumpkin, G.R., Smith, K.L., Gieré, R. and Williams, C.T., (2004) Geochemical behaviors of host phases for actinides and fission products in crystalline ceramic nuclear waste forms. Pp. 89111 in: Energy, Waste, and the Environment: a Geochemical Perspective (R. Gieré and P. Stille, editors). Special Publications, 236. Geological Society, London.Google Scholar
Lumpkin, G.R., Leung, S.H.F. and Ferenzy, J. (2012) Chemistry, microstructure, and alpha decay damage of natural brannerite. Chemical Geology, 291, 5568.CrossRefGoogle Scholar
Lumpkin, G.R., Blackford, M.G., and Colella, M. (2013) Chemistry and radiation effects of davidite. American Mineralogist, 98, 275278.CrossRefGoogle Scholar
Mariano, A.N., (1989) Economic geology of rare earth minerals. Pp. 309337 in: Geochemistry and Mineralogy of Rare Earth Elements (B.R. Lipin and G.A. McKay, editors). Reviews in Mineralogy, 21. Mineralogical Society of America, Washington DC.Google Scholar
Mathieu, R., Zetterström, L., Cuney, M., Gauthier- Lafaye, F. and Hidaka, H. (2001) Alteration of monazite and zircon and lead migration as geochemical tracers of fluid paleocirculations around the Oklo-Okélobondo and Bangombé natural nuclear reaction zones (Franceville basin, Gabon). Chemical Geology, 171, 147171.CrossRefGoogle Scholar
McCarthy, G.J., (1976) High-level waste ceramics. Transactions of the American Nuclear Society, 23, 168169.Google Scholar
McCarthy, G.J., (1977) High-level waste ceramics: materials considerations and product characterization. Nuclear Technology, 32, 92104.CrossRefGoogle Scholar
McLaren, A.C., Fitzgerald, J.D., and Williams, I.S., (1994) The microstructure of zircon and its influence on the age determination from Pb/U isotopic ratios measured by ion microscope. Geochimica et Cosmochimica Acta, 58, 9931005.CrossRefGoogle Scholar
Meldrum, A., Boatner, L.A., and Ewing, R.C., (1997) Displacive radiation effects in the monazite- and zircon-structure orthophosphates. Physical Review B, 56, 1380513814.CrossRefGoogle Scholar
Meldrum, A., Boatner, L.A., Weber, W.J., and Ewing, R.C., (1998) Radiation damage in zircon and monazite. Geochimica et Cosmochimica Acta, 62(14), 25092520.CrossRefGoogle Scholar
Mitchell, R.H., (2002) Perovskites Modern and Ancient. Almaz Press, Thunder Bay, Ontario, Canada.Google Scholar
Mitchell, R.H., and Chakhmouradian, A.R., (1998) Thrich loparite from the Khibina alkaline complex, Kola Peninsula: isomorphism and paragenesis. Mineralogical Magazine, 62, 341353.CrossRefGoogle Scholar
Mitchell, R.H., Wu, F.-Y., and Yang, Y.-H. (2011) In situ U-Pb S., and Nd isotopic analysis of loparite by LA-(MC)-ICP-MS. Chemical Geology, 280, 190199.CrossRefGoogle Scholar
Murakami, T., Chakoumakos, B.C., Ewing, R.C., Lumpkin, G.R., and Weber, W.J., (1991) Alpha-decay event damage in zircon. American Mineralogist, 76, 15101532.Google Scholar
Nasdala, L., Reiners, P.W., Garver, J.I., Kennedy, A.K., Stern, R.A., Balan, E. and Wirth, R. (2004) Incomplete retention of radiation damage in zircon from Sri Lanka. American Mineralogist, 89, 219231.CrossRefGoogle Scholar
Nasraoui, M., Bilal, E., and Gibert, R. (1999) Fresh and weathered pyrochlore studies by Fourier transform infrared spectroscopy coupled with thermal analysis. Mineralogical Magazine, 63, 567578.CrossRefGoogle Scholar
Nesbitt, H.W., Bancroft, G.M., Fyfe, W.S., Karkhanis, S.N., and Nishijima, A. (1981) Thermodynamic stability and kinetics of perovskite dissolution. Nature, 289, 358362.CrossRefGoogle Scholar
Oelkers, E.H., and Poitrasson, F. (2002) An experimental study of the dissolution stoichiometry and rates of a natural monazite as a function of temperature from 50 to 230°C and pH from 1.5 to 10. Chemical Geology, 191, 7387.CrossRefGoogle Scholar
Ohnenstetter, D. and Piantone, P. (1992) Pyrochloregroup minerals in the Beauvior peraluminous leucogranite, Massif Central, France. The Canadian Mineralogist, 30, 771784.Google Scholar
Ondrejka, M., Uher, P., Putiš, M., Broska, I., Bačík, P., Konečný , P., and Schmiedt, I. (2012) Two-stage breakdown of monazite by post-magmatic and metamorphic fluids: an example from the Veporic orthogneiss, Western Carpathians, Slovakia. Lithos, 142–143, 245255.Google Scholar
Orlandi, P., Pasero, M., Duchi, G. and Olmi, F. (1997) Dessauite, (Sr,Pb)(Y,U)(Ti,Fe 3+ )20 O38, a new mineral of the crichtomite group from Buca della Vena mine, Tuscany, Italy. American Mineralogist, 82, 807811.CrossRefGoogle Scholar
Oversby, V.M., and Phinney, D.L., (1992) The development of surface alteration layers on SRL-165 nuclear waste glasses. Journal of Nuclear Materials, 190, 247268.CrossRefGoogle Scholar
Oversby, V.M., and Ringwood, A.E., (1981) Lead isotopic studies of zirconolite and perovskite and their implications for long range synroc stability. Radioactive Waste Management, 1, 289307.Google Scholar
Poitrasson, F., Chenery, S. and Bland, D.J., (1996) Contrasted monazite hydrothermal alteration mechanisms and their geochemical implications. Earth and Planetary Science Letters, 145, 7996.CrossRefGoogle Scholar
Poitrasson, F., Chenery, S. and Shepherd, T.J., (2000) Electron microprobe and LA-ICP-MS study of monazite hydrothermal alteration: implications for U-Th-Pb geochronology and nuclear ceramics. Geochimica et Cosmochimica Acta, 64, 32833297.CrossRefGoogle Scholar
Pršek, J., Ondrejka, M., Bačík, P., Budzyń , B. and Uher, P. (2010) Metamorphic-hydrothermal REE minerals in the Bacú ch magnetite deposit, western Carpathians, Slovakia: (Sr,S)-rich monazite-(Ce) and Nd-dominant hingganite. The Canadian Mineralogist, 48, 8194.CrossRefGoogle Scholar
Rasmussen, B. and Fletcher, I.R., (2004) Zirconolite: a new U-Pb chronometer for mafic igneous rocks. Geology, 32, 785788.CrossRefGoogle Scholar
Read, D., Andreoli, M.A.G., Knoper, M., Williams, C.T., and Jarvis, N. (2002) The degradation of monazite: Implications for the mobility of rare-earth and actinide elements during low-temperature alteration. European Journal of Mineralogy, 14, 487498.CrossRefGoogle Scholar
Ringwood, A.E., (1978) Safe Disposal of High Level Nuclear Reactor Wastes: A New Strategy, Australian National University Press, Canberra, Australia.Google Scholar
Ringwood, A.E., Kesson, S.E., Reeve, K.D., Levins, D.M., and Ramm, E.J., (1988) Synroc. Pp. 233234 in: Radioactive Waste Forms for the Future (W. Lutze and R.C. Ewing, editors). North-Holland, Amsterdam.Google Scholar
Ringwood, A.E., Kesson, S.E., Ware, N.G., Hibberson, W. and Major, A. (1979) Geological immobilisation of nuclear reactor wastes. Nature, 278, 219223.CrossRefGoogle Scholar
Ringwood, A.E., Oversby, V.M., Kesson, S.E., Sinclair, W., Ware, N., Hibberson, W. and Major, A. (1981) Immobilization of high-level nuclear reactor wastes in synroc: a current appraisal. Nuclear and Chemical Waste Management, 2, 287305.CrossRefGoogle Scholar
Roberts, S.K., Bourcier, W.L., and Shaw, H.F., (2000) Aqueous dissolution kinetics of pyrochlore, zirconolite and brannerite at 25, 50, and 75°C. Radiochimica Acta, 88, 539543.CrossRefGoogle Scholar
Salje, E.K.H., Chrosch, J. and Ewing, R.C., (1999) Is “metamictization” of zircon a phase transition? American Mineralogist, 84, 11071116.Google Scholar
Shoesmith, D.W., and Sunder, S. (1992) The prediction of nuclear fuel (UO2) dissolution rates under waste disposal conditions. Journal of Nuclear Materials, 190, 2035.CrossRefGoogle Scholar
Smith, K.L., Lumpkin, G.R., Blackford, M.G., Day, R.A., and Hart, K.P., (1992) The durability of Synroc. Journal of Materials Research, 190, 287294.Google Scholar
Sowder, A., Kessler, J., Apted, M. and Kozak, M. (2013) What now for permanent disposal of used nuclear fuel and HLW in the United States? Radwaste Solutions, 20, 2639.Google Scholar
Staatz, M.H., Adams, J.W., and Wahlberg, J.S., (1976) Brown, yellow, orange, and greenish-black thorites from the Seerie pegmatite, Colorado. Journal of Research of the U.S. Geological Survey, 4, 575582.Google Scholar
Stefanovsky, S.V., Yudintsev, S.V., Gieré, R. and Lumpkin, G.R., (2004) Nuclear waste forms. Pp. 3663 in: Energy, Waste , and the Environment: a Geochemical Perspective (R. Gieré and P. Stille, editors). Special Publications, 236. Geological Society, London.Google Scholar
Strachan, D.M., Scheele, R.D., Buck, E.C., Kozelisky, A.E., Sell, R.L., Elovich, R.J., and Buchmiller, W.C., (2005) Radiation damage effects in candidate titanates for Pu disposition: pyrochlore. Journal of Nuclear Materials, 345, 109135.CrossRefGoogle Scholar
Subramanian, M.A., Aravamudan, G. and Subba Rao, G.V., (1983) Oxide pyrochlore – a review. Progress in Solid State Chemistry, 15, 55143.CrossRefGoogle Scholar
Thomas, B.S., and Zhang, Y. (2003) A kinetic model of the oxidative dissolution of brannerite, UTi2O6 . Radiochimica Acta, 91, 463472.CrossRefGoogle Scholar
Townsend, K.J., Miller, C.G., D’Andrea, J.L., Ayers, J.C., Harrison, T.M., and Coath, C.D., (2000) Low temperature replacement of monazite in the Ireteba granite, Southern Nevada: geochronological implications. Chemical Geology, 172, 95112.CrossRefGoogle Scholar
Trachenko, K., Dove, M.T., and Salje, E.K.H. (2002) Structural changes in zircon under a-decay irradiation. Physical Review B, 65, 180102(R).Google Scholar
Trotignon, L., Petit, J.-C., Della Mea, G. and Dran, J.-C. (1992) The compared aqueous corrosion of four simple borosilicate glasses: Influence of Al C. and Fe on the formation and nature of secondary phases. Journal of Nuclear Materials, 190, 228246.CrossRefGoogle Scholar
Vance, E.R., (1994) Synroc: a suitable waste form for actinides. Materials Research Society Bulletin, XIX, 2832.CrossRefGoogle Scholar
Vance, E.R., (2012) Ceramic waste forms. Pp. 485503 in: Comprehensive Nuclear Material, 5 (R.J.M. Konings, editor). Elsevier, Amsterdam.Google Scholar
Vance, E.R., Lumpkin, G.R., Carter, M.L., Cassidy, D.J., Ball, C.J., Day, R.A., and Begg, B.D., (2002) Incorporation of uranium in zirconolite (CaZr2O7). Journal of American Ceramic Society, 85, 18531859.CrossRefGoogle Scholar
Wall, F., Williams, C.T., and Woolley, A.R., (1999). Pyrochlore in niobium ore deposites. Pp. 687690 in:Mineral Deposits: Processes to Processing (C.J. Stanley, editor), 1. Balkema Publishers, Rotterdam.Google Scholar
Wall, F., Williams, C.T., Woolley, A.R., and Nasraoui, M. (1996) Pyrochlore from weathered carbonatite at Lueshe, Zaire. Mineralogical Magazine, 60, 731750.CrossRefGoogle Scholar
Weber, W.J., Wald, J.W., and Matzke, H.J., (1986) Effects of self-radiation damage in Cm-doped Gd2Ti2O7 and CaZrTi2O7 . Journal of Nuclear Materials, 138, 196209.CrossRefGoogle Scholar
Weber, W.J., Ewing, R.C., and Meldrum, A. (1997) The kinetics of alpha-decay-induced amorphization in zircon and apatite containing weapons-grade plutonium or other actinides. Journal of Nuclear Materials, 250, 147155.CrossRefGoogle Scholar
Weber, W.J., Ewing, R.C., Catlow, C.R.A., Diaz de la Rubia, T., Hobbs, L.W., Kinoshita, C., Matzke, H.J., Motta, A.T., Nastasi, M., Salje, E.K.H., Vance, E.R., and Zinkle, S.J., (1998) Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. Journal of Materials Research, 13, 14341484.CrossRefGoogle Scholar
Weber, W.J., Navrotsky, A., Stefanovsky, S., Vance, E.R., and Vernaz, E. (2009) Materials science of high-level nuclear waste immobilization. MRS Bulletin. 34(1), 4653.CrossRefGoogle Scholar
Williams, C.T., and Gieré, R. (1996) Zirconolite: a review of localities worldwide, and a compilation of its chemical compositions. Bulletin of the Natural History Museum of London (Geology), 52(1), 124.Google Scholar
Williams, C.T., Bulakh, A.G., Gieré, R., Lumpkin, G.R., and Mariano, A.N., (2001) Alteration features in natural zirconolites from carbonatites. Pp. 945952 in: Scientific Basis for Nuclear Waste Management XXIV. Materials Research Society Symposium Proceedings (K.P. Hart and G.R. Lumpkin, editors), 663. Materials Research Society, Warrendale, Pennsylvania, USA.Google Scholar
Williams, C.T., Wall, F., Wooley, A.R., and Phillipo, S. (1997) Compositional variation in pyrochlore from the Bingo carbonatite, Zaire. Journal of African Earth Science, 25, 137145.CrossRefGoogle Scholar
Wise, M.A., and Černý, P. (1990) Primary compositional range and alteration trends of microlite from the Yellowknife pegmatite field, Northwest Territories, Canada. Mineralogy and Petrology, 43, 8398.CrossRefGoogle Scholar
Zhang, Y., Hart, K.P., Bourcier, W.L., Day, R.A., Colella, M., Thomas, B., Aly, Z. and Jostsons, A. (2001) Kinetics of uranium release from Synroc phases. Journal of Nuclear Materials, 289, 254262.CrossRefGoogle Scholar
Zhang, Y., Thomas, B.S., Lumpkin, G.R., Blackford, M., Zhang, Z., Colella, M. and Aly, Z. (2003) Dissolution of synthetic brannerite in acidic and alkaline fluids. Journal of Nuclear Materials, 321, 17.CrossRefGoogle Scholar
Zhang, Z., Blackford, M.G., Lumpkin, G.R., Smith, K.L., and Vance, E.R. (2005) Aqueous dissolution of perovskite (CaTiO3): Effects of surface damage and [Ca 2+ ] in the leachant. Journal of Materials Research, 20, 24622473.CrossRefGoogle Scholar