Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T13:04:33.893Z Has data issue: false hasContentIssue false

Serpentine and brucite of ultramafic clasts from the South Chamorro Seamount (Ocean Drilling Program Leg 195, Site 1200): inferences for the serpentinization of the Mariana forearc mantle

Published online by Cambridge University Press:  05 July 2018

M. D'Antonio*
Affiliation:
Dipartimento di Scienze della Terra, University Federico II, Napoli, Italy
M. B. Kristensen
Affiliation:
Department of Earth Sciences, University of Aarhus, Denmark
*

Abstract

Serpentine minerals and brucite in ultramafic rocks from the South Chamorro Seamount were characterized chemically to investigate the serpentinization of the Mariana forearc mantle. Relict primary minerals of the serpentinites are olivine, enstatite and minor Cr-spinel and diopside. The secondary minerals are mostly serpentine and brucite with minor magnetite. The serpentine minerals, mostly lizardite and chrysotile, display large compositional variations. Al2O3 and Cr2O3 contents depend generally upon the nature of the primary mineral from which the serpentine was derived. Both serpentine minerals and brucite exhibit wide Mg, Fe and Mn substitution: the Mg# ranges are 95.1–77.2 and 88.9–60.8, respectively. These mineralogical and chemical features allowed us to estimate an upper temperature limit for serpentinization of ∼200–300°C, in agreement with recent thermal models which suggest that the serpentinized mantle wedge of the Izu-Bonin-Mariana subduction zone is cold. The high degree of serpentinization (40–100%, average >75%), and the serpentine + brucite paragenesis of these ultramafics imply that the Mariana forearc mantle has a significantly reduced density and strength down to ∼30 km, which provides a driving mechanism for serpentinite diapirism. Pervasive serpentinization of the forearc by fluids released from the décollement zone also explains the low seismicity of the Izu-Bonin-Mariana subduction zone.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrinier, P., Mével, C. and Girardeau, J. (1988) Hydrothermal alteration of the peridotites cored at the ocean/continent boundary of the Iberian margin: petrologic and stable isotope evidence. Pp. 225234 in: Proceedings of the Ocean Drilling Program, Scientific Results, 103 (Boillot, G., Winterer, E.L. et al., editors). Ocean Drilling Program, College Station, TX, USA.Google Scholar
Agrinier, P., Cornen, G. and Beslier, M.-O. (1996) Mineralogical and oxygen isotopic features of serpentinites recovered from the ocean/continent transition in the Iberia Abyssal Plain. Pp. 541552 in: Proceedings of the Ocean Drilling Program, Scientific Results, 149 (Whitmarsh, R.B, Sawyer, D.S., Klaus, A. and Masson, D.G., editors). Ocean Drilling Program, College Station, TX, USA.Google Scholar
Anthony, J.W., Bideaux, R.A., Bladh, K.W. and Nichols, M.C. (1997) Handbook of Mineralogy, Volume III, Halides, Hydroxides, Oxides. Mineral Data Publishing, Tucson, AZ, USA.Google Scholar
Bailey, E. and Holloway, J. (2000) Experimental determination of elastic properties of talc to 800°C, 0.5 GPa; calculation of the effect on hydrated peridotite, and implications for cold subduction zones. Earth and Planetary Science Letters, 183, 487498.CrossRefGoogle Scholar
Beard, J.S. and Hopkinson, L. (2000) A fossil, serpentinization-related hydrothermal vent, Ocean Drilling Program Leg 173, Site 1068 (Iberia Abyssal Plain): Some aspects of mineral and fluid chemistry. Journal of Geophysical Research, 105, 16,52716,539.CrossRefGoogle Scholar
Benton, L.D., Ryan, J.G. and Tera, F. (2001) Boron isotope systematics of slab fluids as inferred from a serpentine seamount, Mariana forearc. Earth and Planetary Science Letters, 187, 273282.CrossRefGoogle Scholar
Blake, M.C. Jr., Jayko, A.S., McLaughlin, R.J. and Underwood, M.B. (1988) Metamorphic and tectonic evolution of the Franciscan Complex, northern California. Pp. 10351060 in: Metamorphism and Crustal Evolution of the Western United States (Ernst, W.G., editor). Rubey Volume VII, Prentice Hall, New Jersey, USA.Google Scholar
Bostock, M.G., Hyndman, R.D., Rondenay, S. and Peacock, S.M. (2002) An inverted continental Moho and serpentinization of the forearc mantle. Nature, 417, 536538.CrossRefGoogle ScholarPubMed
Brocher, T.M., Parsons, T., Tréhu, A.M., Snelson, C.M. and Fisher, M.A. (2003) Seismic evidence for widespread serpentinized forearc upper mantle along the Cascadia margin. Geology, 31, 267270.2.0.CO;2>CrossRefGoogle Scholar
Deer, W.A., Howie, R.A. and Zussman, J. (1992) An Introduction to the Rock-forming Minerals – second edition. Longman Scientific and Technical, Harlow, Essex, UK, 696 pp.Google Scholar
Dilek, Y., Coulton, A. and Hurst, S.D. (1997) Serpentinization and hydrothermal veining in peridotites at Site 920 in the MARK area. Pp. 3559 in: Proceedings of the Ocean Drilling Program, Scientific Results, 153 (Karson, J.A., Cannat, M., Miller, D.J. and Elthon, D., editors). Ocean Drilling Program, College Station, TX, USA.Google Scholar
Evans, B.W. (1977) Metamorphism of Alpine peridotite and serpentinite. Annual Review of Earth and Planetary Sciences, 5, 397447.CrossRefGoogle Scholar
Evans, B.W. (2004) The serpentinite multisystem revisited: chrysotile is metastable. International Geology Review, 46, 479506.CrossRefGoogle Scholar
Evans, B.W. and Guggenheim, S. (1988) Talc, pyrophyllite, and related minerals. Pp. 225294 in: Hydrous Phyllosilicates (exclusive of Micas) (Bailey, S.W., editor). Reviews in Mineralogy, 19, Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Evans, B.W. and Trommsdorff, V. (1972) Der einfluss des eisens auf die hydratisierung von duniten. Schweizerische Mineralogische und Petrographische Mitteilungen, 52–2, 251256.Google Scholar
Evans, B.W., Johannes, W., Oterdoom, H. and Trommsdorff, V. (1976) Stability of chrysotile and antigorite in the serpentine multisystem. Schweizerische Mineralogische und Petrographische Mitteilungen, 56, 7993.Google Scholar
Fryer, P. (1992) A synthesis of Leg 125 drilling of serpentine seamounts on the Mariana and Izu-Bonin forearcs. Pp. 593614 in: Proceedings of the Ocean Drilling Program, Scientific Results, 125 (Fryer, P., Pearce, J.A., Stokking, L.B. et al., editors). Ocean Drilling Program, College Station, TX, USA.Google Scholar
Fryer, P., Wheat, C.G. and Mottl, M.J. (1999) Mariana blueschist mud volcanism: implications for conditions within the subduction zone. Geology, 27, 103106.2.3.CO;2>CrossRefGoogle Scholar
Gibson, I.L., Beslier, M.-O., Cornen, G., Milliken, K.L. and Seifert, K.E. (1996) Major- and trace-element seawater alteration profiles in serpentinite formed during the development of the Iberia Margin, Site 897. Pp. 519527 in: Proceedings of the Ocean Drilling Program, Scientific Results, 149 (Whitmarsh, R.B., Sawyer, D.S., Klaus, A. and Masson, D.G., editors). Ocean Drilling Program, College Station, TX, USA.Google Scholar
Guggenheim, S. and Eggleton, R.A. (1988) Crystal chemistry, classification, and identification of modulated layer silicates. Pp. 675725 in: Hydrous Phyllosilicates (exclusive of Micas) (Bailey, S.W., editor). Reviews in Mineralogy, 19, Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Heling, D. and Schwarz, A. (1992) Iowaite in serpentinite muds at Sites 778, 779, 780, and 784: a possible cause for the low chlorinity of pore waters. Pp. 313323 in: Proceedings of the Ocean Drilling Program, Scientific Results, 125 (Fryer, P., Pearce, J.A., Stokking, L.B. et al., editors). Ocean Drilling Program, College Station, TX, USA.Google Scholar
Hostetler, P.B., Coleman, R.G., Mumpton, F.A. and Evans, B.W. (1966) Brucite in alpine serpentinites. American Mineralogist, 51, 7598.Google Scholar
Hyndman, R.D. and Peacock, S.M. (2003) Serpentinization of the forearc mantle. Earth and Planetary Science Letters, 212, 417432.CrossRefGoogle Scholar
Ishii, T., Robinson, P.T., Maekawa, H. and Fiske, R. (1992) Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu- Ogasawara-Mariana forearc, Leg 125. Pp. 445486 in: Proceedings of the Ocean Drilling Program, Scientific Results, 125 (Fryer, P., Fryer, P., Pearce, J.A. Stokking et al., editors). Ocean Drilling Program, College Station, TX, USA.Google Scholar
Janecky, D.R. and Seyfried, W.E. Jr. (1986) Hydrothermal serpentinization of peridotite within the oceanic crust: Experimental investigations of mineralogy and major element chemistry. Geochimica et Cosmochimica Acta, 50, 13571378.CrossRefGoogle Scholar
Kimball, K.L. and Evans, C.A. (1988) Hydrothermal alteration of peridotite from the Galicia margin, Iberian peninsula. Pp. 241251 in: Proceedings of the Ocean Drilling Program, Scientific Results, 103 (Boillot, G., Winterer, E.L. et al., editors). Ocean Drilling Program, College Station, TX, USA.Google Scholar
Kohls, D.W. and Rodda, J.L. (1967) Iowaite, a new hydrous magnesium hydroxide-ferric oxychloride from the Precambrian of Iowa. American Mineralogist, 52, 12611271.Google Scholar
Labotka, T.C. and Albee, A.L. (1979) Serpentinization of the Belvidere Mountain ultramafic body, Vermont: mass balance and reaction at the metasomatic front. The Canadian Mineralogist, 17, 831845.Google Scholar
Maekawa, H., Yamamoto, K., Ueno, T., Osada, Y. and Nogami, N. (2004) Significance of serpentinites and related rocks in the high-pressure metamorphic terranes, circum-Pacific regions. International Geology Review, 46, 426444.CrossRefGoogle Scholar
Manning, C.E. (1995) Phase-equilibrium controls on SiO2 metasomatism by aqueous fluids in subduction zones: reactions at constant temperature and pressure. International Geology Review, 37, 10741093.CrossRefGoogle Scholar
Moody, J.B. (1976 a) Serpentinization: a review. Lithos, 9, 125138.CrossRefGoogle Scholar
Moody, J.B. (1976 b) An experimental study on the serpentinization of iron-bearing olivines. The Canadian Mineralogist, 14, 462478.Google Scholar
Mottl, M.J. (1992) Pore waters from serpentine seamounts in the Mariana and lzu-Bonin forearcs, Leg 125: evidence for volatiles from the subducting slab. Pp. 373385 in: Proceedings of the Ocean Drilling Program, Scientific Results, 125 (Fryer, P., Pearce, J.A., Stokking, L.B. et al., editors). Ocean Drilling Program, College Station, TX, USA.Google Scholar
Mottl, M.J., Komor, S.C., Fryer, P. and Moyer, C.L. (2003) Deep-slab fluids fuel extremophilic Archaea on a Mariana forearc serpentinite mud volcano: Ocean Drilling Program Leg 195. Geochemistry Geophysics and Geosystems, 4(11), 9009, doi: 10.1029/2003GC000588.CrossRefGoogle Scholar
O'Hanley, D.S. (1996) Serpentinites: Records of Tectonic and Petrological History. Oxford Monographs on Geology and Geophysics No. 34, Oxford University Press, New York, 277 pp.Google Scholar
O'Hanley, D.S. and Dyar, M.D. (1993) The composition of lizardite 1T and the formation of magnetite in serpentinites. American Mineralogist, 78, 391404.Google Scholar
Pacheco, J.F., Sykes, L.R. and Scholz, C.H. (1993) Nature of seismic coupling along simple plate boundaries of the subduction type. Journal of Geophysical Research, 98, 14,13314,160.CrossRefGoogle Scholar
Page, N.J. (1967) Serpentinization at Burro Mountain, California. Contributions to Mineralogy and Petrology, 14, 321342.CrossRefGoogle Scholar
Parkinson, I.J. and Pearce, J.A. (1998) Peridotites from the Izu-Bonin-Mariana forearc (ODP Leg 125): evidence for mantle melting and melt-mantle interactions in a supra-subduction zone setting. Journal of Petrology, 39, 15771618.CrossRefGoogle Scholar
Peacock, S.M. and Hyndman, R.D. (1999) Hydrous minerals in the mantle wedge and the maximum depth of subduction thrust earthquakes. Geophysical Research Letters, 26, 25172520.CrossRefGoogle Scholar
Puga, E., Nieto, J.M., Diaz de Federico, A., Bodinier, J.L. and Morten, L. (1999) Petrology and metamorphic evolution of ultramafic rocks and dolerite dykes of the Betic Ophiolitic Association (Mulhacen Complex, SE Spain): evidence of eo-Alpine subduction following an ocean-floor metasomatic process. Lithos, 49, 2356.CrossRefGoogle Scholar
Rock, N.M.S. (1990) The International Mineralogical Association (IMA/CNMMN) pyroxene nomenclature scheme: computerization and its consequences. Mineralogy and Petrology, 43, 99119.CrossRefGoogle Scholar
Shipboard Scientific Party (2002) Site 1200. Pp. 1173 in: Proceedings of the Ocean Drilling Program, Initial Reports, 195 (Salisbury, M.H., Shinohara, M., Richter, C. et al., editors). [CD-ROM]. Available from Ocean Drilling Program, Texas A&M University, College Station TX 77845–9547, USA.CrossRefGoogle Scholar
Shipboard Scientific Party (2003) Leg 209 Preliminary Report. Ocean Drilling Program, Preliminary Report, 109. [Online]. Available from World Wide Web: http://www-odp.tamu.edu/publications/prelim/209-prel/209PREL.PDF.Google Scholar
Takahashi, N., Suyehiro, K. and Shinohara, M. (1998) Implications from the seismic crustal structure of the northern Izu-Bonin arc. The Island Arc, 7, 383394. doi: 10.1046/j.1440–1738.1998.00197.x.CrossRefGoogle Scholar
van Keken, P.E. (2003) The structure and dynamics of the mantle wedge. Earth and Planetary Science Letters, 215, 323338.CrossRefGoogle Scholar
Viti, C. and Mellini, M. (1998) Mesh textures and bastites in the Elba retrograde serpentinites. European Journal of Mineralogy, 10, 13411359.CrossRefGoogle Scholar
Wakabayashi, J. (1992) Nappes, tectonics of oblique plate convergence, and metamorphic evolution related to 140 million years of continuous subduction, Franciscan Complex, California. Journal of Geology, 100, 1940.CrossRefGoogle Scholar
Wicks, F.J. (1969) X-ray and optical studies of serpentine minerals. PhD dissertation, Oxford, England.Google Scholar
Wicks, F.J. and Plant, A.G. (1979) Electron-microprobe and X-ray-microbeam studies of serpentine textures. The Canadian Mineralogist, 17, 785830.Google Scholar
Worden, R.H., Droop, G.T.R. and Champness, P.E. (1991) The reaction antigorite → olivine + talc + H2O in the Bergell aureole, N. Italy. Mineralogical Magazine, 55, 367377.CrossRefGoogle Scholar
Zanetti, A., Vannucci, R., Spadea, P. and D'Antonio, M. (2003) Bulk rock and mineral chemistry of peridotites from Mariana forearc seamounts (ODP Leg 195, Site 1200A, and ODP Leg 125, Sites 779A and 784A) and the petrogenesis of mantle wedge peridotites. Eos Transactions AGU, 84 (46), Fall Meeting Supplement, Abstract V11E–053.Google Scholar
Zanetti, A., Spadea, P., D'Antonio, M. and Vannucci, R. (2004) Trace element in clinopyroxene of peridotites from Mariana forearc seamounts (ODP Holes 1200A, 779A, and 784A): evidence for polybaric, high-degree, fractional mantle melting. Earth and Planetary Science Letters, submitted.Google Scholar