Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-11T05:39:35.889Z Has data issue: false hasContentIssue false

Species sensitivity of zeolite minerals for uptake of mercury solutes

Published online by Cambridge University Press:  05 July 2018

L. S. Campbell*
Affiliation:
Research Institute for the Built and Human Environment, School of Environment and Life Sciences, Peel Building, University of Salford, Salford M5 4WT, UK
A. Chimedtsogzol
Affiliation:
Institute of Materials Research, Cockcroft Building, University of Salford, Salford M5 4WT, UK
A. Dyer
Affiliation:
Institute of Materials Research, Cockcroft Building, University of Salford, Salford M5 4WT, UK

Abstract

The uptake of inorganic Hg2+ and organometallic CH3Hg+ from aqueous solutions by 11 different natural zeolites has been investigated using a batch distribution coefficient (Kd) method and supported by a preliminary voltammetric study. The effect of mercury concentration on the Kd response is shown over an environmentally appropriate concentration range of 0.1–5 ppm inorganic and organometallic Hg using a batch factor of 100 ml g-1 and 20 h equilibration. Analcime and a Na-chabazite displayed the greatest methylmercury uptakes (Kd values at 1.5 ppm of 4023 and 3456, respectively), with mordenite as the smallest at 578. All uptake responses were greater for methylmercury than for the inorganic mercuric nitrate solutions, suggesting a distinctive sensitivity of zeolites to reaction with different types of solute species. It is likely that this sensitivity is attributable to the precise nature of the resultant Hg-zeolite bonds. Additionally, both the Si-Al ratio and the Na content of the initial natural zeolite samples are shown to influence the Kd responses, with positive correlations between Kd and Na content for all zeolites excluding mordenite.

Type
Editorial
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Institute for Geological Sciences, Mineralogy/Geochemistry, Von-Seckendorff-Platz 3, Martin Luther University, 06120 Halle/Saale, Germany

References

Baeyens, W., Meuleman, C., Muhaya, B. and Leermakers, M. (1998) Behaviour and speciation of mercury in the Scheldt estuary (water, sediments and benthic organisms). Hydrobiologia, 366, 6379.CrossRefGoogle Scholar
Bell, N. A., Crouch, D. J. and Jaffer, N. E. (2004) Coordination complexes of 2-thienyl- and 2-furyl-mercurials. Applied Organometallic Chemistry, 18, 135138.CrossRefGoogle Scholar
Boudou, A. and Ribeyre, F. (1997) Mercury in the food web: Accumulation and transfer mechanisms. Metal Ions in Biological Systems, 34, 289319.Google ScholarPubMed
Campbell, L. S., Chimedtsogzol, A. and Dyer, A. (2004) Methylmercury uptake by natural zeolites. Geochimica et Cosmochimica Ada, 68(11), All5.Google Scholar
Cano-Pavon, J. M., de Torres, A. G., Sanchez-Rojas, F. and Caoada-Rudner, P. (1999) Analytical methods for mercury speciation in environmental and biological samples — an overview. International Journal of Environmental Analytical Chemistry, 75, 93106.CrossRefGoogle Scholar
Cotton, F. A. and Wilkinson, G. (1999) Advanced Inorganic Chemistry (6th edition). Wiley, Chichester, UK.Google Scholar
Diederich, H. J., Meyer, S. and Scholz, F. (1994) Automatic adsorptive stripping voltammetry at thin-mercury film electrodes (TMFE). Fresenius Journal of Analytical Chemistry, 349, 670675.CrossRefGoogle Scholar
Dopp, E., Hartmann, L. M., Florea, A. M., Rettenmeier, A. W. and Hirner, A. V. (2004) Environmental distribution, analysis, and toxicity of organometal(-loid) compounds. Critical Reviews in Toxicology, 34, 301333.CrossRefGoogle ScholarPubMed
Dyer, A. (2005) Ion exchange properties of zeolites. Pp. 181204.in: Zeolites and Ordered Mesoporous Materials: Progress and Prospects (Cejka, J. and van Bekkum, H., editors). Studies in Surface Science Catalysis, 157, Elsevier, Amsterdam.CrossRefGoogle Scholar
Dyer, A. and Faghihian, H. (1998) Diffusion in heteroionic zeolites: Part 2. Diffusion of water in heteroionic zeolites. Microporous and Mesoporous Materials, 21, 3944.CrossRefGoogle Scholar
Dyer, A. and Jozefowicz, L. C. (1992) The removal of thorium from aqueous solutions using zeolites. Journal of Radio analytical and Nuclear Chemistry, 159, 4762.CrossRefGoogle Scholar
Dyer, A. and Shaheen, T. (1995) Speciation observed by cation exchange. Science of the Total Environment, 173/174, 301311.CrossRefGoogle Scholar
Dyer, A. and Zubair, M. (1998) Ion-exchange in chabazite. Microporous and Mesoporous Materials, 22, 135150.CrossRefGoogle Scholar
Dyer, A., Gawad, A., Mikhail, M., Enamy, H. and Afshang, M. (1991) The natural zeolite, laumontite, as a potential material for the treatment of aqueous nuclear wastes. Journal of Radioanalytical Nuclear Chemistry, Letter, 154, 265276.CrossRefGoogle Scholar
Dyer, A., Chimedtsogzol, A., Campbell, L. S. and Williams, C. (2006) Uptake of caesium and strontium radioisotopes by natural zeolites from Mongolia. Microporous and Mesoporous Materials (in press).CrossRefGoogle Scholar
Fergusson, J. E. (1990) The Heavy Elements: Chemistry, Environmental Impact and Health Effects. Pergamon Press, Oxford, UK.Google Scholar
Fischer, E. and van den Berg, C. M. G. (1999) Anodic stripping voltammetry of lead and cadmium using a mercury film electrode and thiocyanate. Analytica Chimica Ada, 385, 273280.CrossRefGoogle Scholar
Garcia, R., Cid, R. and Arriagada, R. (1999) Cr(III) and Hg(II) retention on zeolites. Zeolite nature and process variables influence. Boletin de la Sociedad Chilena de Quimica, 44, 435442.Google Scholar
Gebremedhin-Haile, T., Olguin, M. T. and Solache-Rios, M. (2003) Removal of mercury ions from mixed aqueous metal solutions by natural and modified zeolitic minerals. Water Air Soil Pollution, 148, 179200.CrossRefGoogle Scholar
Godelitsas, A. and Armbruster, T. (2003) HEU-type zeolites modified by transition elements and lead. Microporous and Mesoporous Materials, 61, 324.CrossRefGoogle Scholar
Haidouti, C. (1997) Inactivation of mercury in contaminated soils using natural zeolites. Science of the Total Environment, 208, 105109.CrossRefGoogle Scholar
Hammerschmidt, C. R. and Fitzgerald, W. F. (2004) Geochemical controls on the production and distribution of methylmercury in near-shore marine sediments. Environmental Science and Technology, 38, 14871495.CrossRefGoogle Scholar
Harjula, R., Letho, J., Pothius, J. H., Dyer, A. and Townsend, R. P. (1993) Ion exchange in zeolites. Part 2. Hydrolysis and dissolution of zeolites NaX and NaY. Journal of the Chemical Society, Faraday Transactions, 89, 971978.CrossRefGoogle Scholar
Ireland-Ripert, J., Bermond, A. and Ducauze, C. (1982) Determination of methylmercury in the presence of inorganic mercury by anodic stripping voltammetry. Analytica Chimica Ada, 143, 249254.CrossRefGoogle Scholar
Jay, J. A., Morel, F. M. M. and Hemond, H. F. (2000) Mercury speciation in the presence of polysulfides. Environmental Science and Technology, 34, 21962200.CrossRefGoogle Scholar
Jurng, J., Lee, T. G., Lee, G. Y., Lee, S. J., Kim, B. H. and Seier, I (2002) Mercury removal from incineration flue gas by organic and inorganic adsorbents. Chemosphere, 47, 907913.CrossRefGoogle Scholar
Lawson, N. M., Mason, R. P. and Laporte, J. M. (2001) The fate and transport of mercury, methylmercury and other trace metals in Chesapeake Bay Tributaries. Water Research, 35, 501515.CrossRefGoogle ScholarPubMed
Leiva-Presa, A., Capdevila, M., Cols, N., Atrian, S. and Gonzalez-Duarte, P. (2004) Chemical foundation of the attenuation of methylmercury(II) cytotoxicity by metallothioneins. European Journal of Biochemistry, 271, 13231328.CrossRefGoogle Scholar
Meier, W. M., Olson, D. H. and Baerlocher, C. (1996) Atlas of zeolite structure types. Zeolites, 17, 1229.Google Scholar
Meyer, S., Scholtz, F. and Trittler, R. (1996) Determination of inorganic ionic mercury down to 5 x 10∼14 mol I“1 by differential pulse anodic stripping voltammetry. Fresenius Journal of Analytical Chemistry, 356, 247252.Google Scholar
Misaelides, P., Godelitsas, A., Charistos, V., Ioannou, D. and Charistos, D. (1994) Heavy-metal uptake by zeoliferous rocks from Metaxades, Thrace, Greece – an exploratory study. Journal of Radioanalytical Nuclear Chemistry, 183, 159166.CrossRefGoogle Scholar
Misaelides, P., Godelitsas, A., Kossionidis, S. and Manos, G. (1996) Investigation of chemical pro¬cesses at mineral surfaces using accelerator-based and surface analytical techniques: Heavy metal sorption on zeolite crystals. Nuclear Instrumemnts and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 113, 296299.CrossRefGoogle Scholar
Morency, J. R. (2002) Zeolite sorbent that effectively removes mercury from flue gases. Filtration and Separation, 39, 2426.CrossRefGoogle Scholar
Moreno-Gutierrez, B. Y. and Olguin, M. T. (2003) Mercury removal from aqueous and organo-aqueous solutions by natural Mexican erionite. Journal of Radioanalytical Nuclear Chemistry, 256, 345348.CrossRefGoogle Scholar
Paquette, K. E. and Helz, G. R. (1997) Inorganic speciation of mercury in sulfidic waters: The importance of zero-valent sulfur. Environmental Science and Technology, 31, 21482153.CrossRefGoogle Scholar
Rajec, P., Macaek, F. and Misaelides, P. (1999) Sorption of heavy metals and radionuclides on zeolites and clays. Pp. 353363.in: Natural Microporous Materials in Environmental Technology: Proceedings of the NATO Advanced Research Workshop on the Application of Natural Microporous Materials for Environmental Technology (Misaelides, P., editor), Slovakia, 1998 (NATO Science Series: E: Applied Sciences). Kluwer Academic Publishers, Dordrecht, The Netherlands.CrossRefGoogle Scholar
Ravichandran, M. (2004) Interactions between mercury and dissolved organic matter – a review. Chemosphere, 55, 319331.CrossRefGoogle Scholar
Reddy, M. M. and Aiken, G. R. (2001) Fulvic acid-sulfide ion competition for mercury ion binding in the Florida Everglades. Water Air Soil Pollution, 132, 89104.CrossRefGoogle Scholar
Ribeiro, C. A. O., Rouleau, C., Pelletier, E., Audet, C. and Tjalve, H. (1999) Distribution kinetics of dietary methylmercury in the Arctic Char. (Salvelinus alpinus). Environmental Science and Technology, 33, 902907.CrossRefGoogle Scholar
Rice, S. B., Papke, K. G. and Vaughan, D. E. W. (1992) Chemical controls on ferrierite crystallization during diagenesis of silicic pyroclastic rocks near Lovelock, Nevada. American Mineralogist, 77', 314328.Google Scholar
Sarbak, Z. (1996) Desulfurization of ethanethiol over cadmium and mercury modified zeolite NaX. Applied Catalysis A – General, 147, 4754.CrossRefGoogle Scholar
Sersen, F., Cik, G., Havranek, E. and Sykorova, M. (2005) Bio-remediation by natural zeolite on plants cultivated in a heavy metal-contaminated medium. Fresenius Environmental Bulletin, 14, 1317.Google Scholar
Soupioni, M., Symeopoulos, B., Athanasiou, J., Gioulis, A., Koutsoukos, P. and Tsolis-Katagas|P. (1999) A preliminary study of mercury uptake by a Greek zeoliferous rock. Pp. 365369.in: Natural Microporous Materials in Environmental Technology: Proceedings of the NATO Advanced Research Workshop on the Application of Natural Microporous Materials for Environmental Technology (Misaelides, P., editor), Slovakia, 1998 (NATO Science Series: E: Applied Sciences). Kluwer Academic Publishers, Dordrecht, The Netherlands.CrossRefGoogle Scholar
Tankawanit, S., Rangsriwatanon, K. and Dyer, A. (2005) Ion exchange of Cu2+, Ni2+, Pb2+ and Zn2+ in analcime synthesized from Thai perlite. Microporous and Mesoporous Materials, 79, 171175.CrossRefGoogle Scholar
Tercier, M.-L., Parthasarathy, N. and Buffle, I. (1995) Reproducible, reliable and rugged Hg-plated Ir-based microelectrode for in situ measurements in natural waters. Electro analysis, 7, 5563.CrossRefGoogle Scholar
Townsend, R. P. and Loizidou, M. (1984) Ion exchange properties of natural clinoptilolite, ferrierite and mordenite, 1 Sodium-ammonium equilibria. Zeolites, 4, 191195.CrossRefGoogle Scholar
Tsitsishvili, G. V., Andronikashvili, T. G., Kirov, G. N. and Filizova, L. D. (1992) Natural Zeolites. Ellis Horwood, Chichester, UK.Google Scholar
Walcarius, A., Devoy, J. and Bessiere, J. (1999) Electrochemical recognition of selective mercury adsorption on mineral. Environmental Science and Technology, 33, 42784284.CrossRefGoogle Scholar
Weitkamp, J., Kleinschmit, P., Kiss, A. and Berke, C. H. (1993) The hydrophobieity index – a valuable test for probing the surface properties of zeolite adsorbents and catalysts. Pp. 7988 in: Proceedings of the 9th International Conference on Zeolites, Montreal, 1992 (Von Ballmoos, R., Higgins, J. B. and Treacy, M. M. J., editors). Butterworth-Heinemann, Stoneham, MA, USA.Google Scholar
Wilhelm, M., Deeken, S., Berssen, E., Saak, W., Lutzen, A., Koch, R. and Strasdeit, H. (2004) The first structurally authenticated organomercury(l+) thioether complexes – Mercury-carbon bond activa¬tion related to the mechanism of the bacterial enzyme organomercurial lyase. European Journal of Inorganic Chemistry, 2301–2312.CrossRefGoogle Scholar
Wilkin, R. T. and Barnes, H. L. (1998) Solubility and stability of zeolites in aqueous solution: I. Analcime, Na-, and K-clinoptilolite. American Mineralogist, 83, 746761.CrossRefGoogle Scholar
Yin, Y., Allen, H. E., Huang, C. P., Sparks, D. L. and Sanders, P. F. (1997) Kinetics of mercury (II) adsorption and desorption on soil. Environmental Science and Technology, 31, 496503.CrossRefGoogle Scholar
Zhen, S. Y. and Seff, K. (1999) Crystal structure of anhydrous NH +-exchanged zeolite X partially reacted with HgCl2 vapor. Cationic chloromercuric clusters, regular octahedral Hg(II), and regular trigonal Hg(II). Journal of Physical Chemistry B, 103, 1040910416.CrossRefGoogle Scholar