Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-29T06:38:52.841Z Has data issue: false hasContentIssue false

The Structural behaviour of tetrahedral framework compounds—a review. Part I. Structural behaviour

Published online by Cambridge University Press:  05 July 2018

D. Taylor*
Affiliation:
15 Leigh Road, Congleton, Cheshire CW12 2EG

Abstract

Tetrahedral framework compounds, as defined in this paper, generally exist as tilted and distorted versions of ideal fully expanded structures at room temperature and atmospheric pressure. How pressure, temperature, and composition (P, T, and X) affect the tilting and distortion is critically reviewed. Although P, T, and X are generally regarded as analogous variables in their effect on framework structures there is reason to believe that they have different structural effects. In particular, an important, and frequently neglected, thermal effect is the apparent shortening of the framework bonds by the anisotropic thermal motion of the framework oxygens. The effects of P, T, and X on displacive transformations in framework compounds are reviewed with particular reference to the disordered alkali feldspars and the leucites. It seems probable from the available evidence that displacive transformations do not take place at a critical size of the framework. Displacive transformations can take place with or without a volume discontinuity and hysteresis. Furthermore, the effects of P, T, and X on a solid-solution series with a displacive transformation can be different, one variable causing a volume discontinuity and another a smooth transition.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

d'amour, H., Denner, W., and Schulz, H. (1979) Ada Crystallogr. B35, 550–5.CrossRefGoogle Scholar
Anderson, O. L., and Bommel, H. E. (1955) J. Am. Ceram. Soc. 38, 125–31.CrossRefGoogle Scholar
Beattie, J. A., Blaisdell, B. E., Kaye, J., Gerry, H. T., and Johnson, C. A. (1940) Proc. Am. Acad. Arts Sci. 74, 371–88.CrossRefGoogle Scholar
Beger, R. M. (1969) Z. Kristallogr. 129, 280–302.CrossRefGoogle Scholar
Bragg, W. L. (1930) Ibid. 74, 237305.Google Scholar
Brand, J. C. D., and Speakman, J. C. (1964) Molecular structure: the physical approach. London: Edward Arnold (Publishers) Ltd. Google Scholar
Bridgman, P. W. (1925) Am. J. Sci. 10, 483–98.CrossRefGoogle Scholar
Bridgman, P. W.and Simon, I. (1953) J. Appl. Phys. 24, 405–13.CrossRefGoogle Scholar
Busing, W. R., and Levy, H. A. (1964) Acta Crystallogr. 17, 142–6.CrossRefGoogle Scholar
Chieh, C. (1979) Ibid. A35, 946–55.Google Scholar
Cohen, L. H., and Klement, W. (1979) Phil. Mag. A39, 399404.CrossRefGoogle Scholar
Cruickshank, D. W. J. (1956) Acta Crystallogr. 9, 757–8.CrossRefGoogle Scholar
Dollase, W. A. (1967) Ibid. 23, 617–23.Google Scholar
Foreman, N., and Peacor, D. R. (1970) Z. Kristallogr. 132, 45–70.CrossRefGoogle Scholar
Gibbons, D. F. (1959) J. Phys. Chem. Solids, 11, 246–8.CrossRefGoogle Scholar
Grundy, H. D., and Brown, W. L. (1969) Mineral. Mag. 37, 156–72.CrossRefGoogle Scholar
Hahn, T., and Buerger, M. J. (1955) Z. Kristallogr. 106, 308–38.Google Scholar
Hazen, R. M. (1976) Science, 194, 105–7.CrossRefGoogle Scholar
Hazen, R. M. (1977) Phys. Chem. Minerals. 1, 83–94.CrossRefGoogle Scholar
Hazen, R. M. and Finger, L. W. (1979) Phase Transitions. 1, 1–22.CrossRefGoogle Scholar
Henderson, C. M. B. (1979) Contrib. Mineral. Petrol. 70, 71–9.CrossRefGoogle Scholar
Henderson, C. M. B. (1981) NERC Publication Series D No. 18, 50–4.Google Scholar
Henderson, C. M. B. and Taylor, D. (1982) Mineral. Mag. 45, 111–27.CrossRefGoogle Scholar
Hirao, K., Soga, N., and Kunugi, M. (1976) J. Phys. Chem. 80, 1612–16.CrossRefGoogle Scholar
Jorgensen, J. D. (1978) J. Appl. Phys. 49, 5473–8.CrossRefGoogle Scholar
Klement, W. (1968) J. Geophys. Res. 73, 4711–16.CrossRefGoogle Scholar
Konnert, J. H., and Appleman, D. E. (1978) Acta Crystallogr. B34, 391403.CrossRefGoogle Scholar
Kosten, K., and Arnold, H. (1980) Z. Kristallogr. 152, 119–33.CrossRefGoogle Scholar
Krisement, O., and Tromel, G. (1959) Z. Natwf. 149, 685–6 and 912–19.Google Scholar
Leadbetter, A. J., and Wright, A. F. (1976) Phil. Mag. 33, 105–12.CrossRefGoogle Scholar
Levien, L., Prewitt, C. T., and Weidner, D. J. (1980) Am. Mineral. 65, 920–30.Google Scholar
Martin, R. F., and Lagache, M. (1975) Contrib. Mineral. Petrol. 13, 275–81.Google Scholar
Megaw, H. D. (1971) Mater. Res. Bull. 6, 1007–18.CrossRefGoogle Scholar
Megaw, H. D. (1973) Crystal structures: a working approach. Philadelphia: W. B. Saunders Co. Google Scholar
Megaw, H. D. (1974) In The Feldspars (MacKenzie, W. S. and Zussman, J. eds.) Manchester: Manchester University Press, 224 and 87–113.Google Scholar
Moore, P. B., and Smith, J. V. (1963) Mineral. Mag. 33, 1008–14.Google Scholar
Mozzi, R. L., and Warren, B. E. (1969) J. Appl. Crystallogr. 2, 164–73.CrossRefGoogle Scholar
Newnham, R. E. (1967) Am. Mineral. 52, 1515–18.Google Scholar
Okamura, F. P., and Ghose, S. (1975) Contrib. Mineral. Petrol. 50, 211–16.CrossRefGoogle Scholar
Olinger, B., and Halleck, P. M. (1976) J. Geophys. Res. 81, 5711–14.CrossRefGoogle Scholar
Pauling, L. (1930) Z. Kristallogr. 74, 213–25.Google Scholar
Peacor, D. R. (1968) Ibid. 127, 213–24.Google Scholar
Sadanaga, R., and Ozawa, T. (1968) Mineral. J. (Japan). 5, 321–33.CrossRefGoogle Scholar
Sato, M. (1979) Ada Crystallogr. A35, 547–53.CrossRefGoogle Scholar
Smith, J. V. (1968) Mineral. Mag. 36, 640–2.Google Scholar
Smith, J. V.and Rinaldi, F. (1962) Ibid. 33, 202–12.Google Scholar
Smyth, H. T., Skogen, H. S., and Harsell, W. B. (1953) J. Am. Ceram. Soc. 36, 327–8.CrossRefGoogle Scholar
Stewart, D. B., and von Limbach, D. (1967) Am. Mineral. 52, 389–413.Google Scholar
Suito, K., Lacam, A., and Iiyama, J. T. (1974) C.R. Acad. Set Paris, 278, 2397–400.Google Scholar
Taylor, D. (1972) Mineral. Mag. 38, 593–604.CrossRefGoogle Scholar
Taylor, D. and Henderson, C. M. B. (1968) Am. Mineral. 53, 1476–89.Google Scholar
Taylor, D. (1978) Phys. Chem. Minerals. 2, 325–36.CrossRefGoogle Scholar
Taylor, W. H. (1930) Z. Kristallogr. 74, 1–19.CrossRefGoogle Scholar
Taylor, W. H. (1933) Ibid. 85, 425.Google Scholar
White, G. K. (1964) Cryogenics. 4, 27.CrossRefGoogle Scholar
Young, R. A. (1962) Defence Documentation Center, Washington, Rept. No. AD 276235, 156 pp.Google Scholar
Young, R. A. and Post, B. (1962) Ada Crystallogr. 15, 337–46.CrossRefGoogle Scholar
Zoltai, T., and Buerger, M. J. (1959) Z. Kristallogr. 11, 129–41.CrossRefGoogle Scholar