Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-13T03:44:16.525Z Has data issue: false hasContentIssue false

Synthesis and crystal structure of a new microporous silicate with a mixed octahedral-tetrahedral framework: Cs3ScSi8O19

Published online by Cambridge University Press:  05 July 2018

U. Kolitsch*
Affiliation:
Institut für Mineralogie und Kristallographie, Universität Wien, Geozentrum, Althanstraβe 14, A-1090 Wien, Austria
E. Tillmanns
Affiliation:
Institut für Mineralogie und Kristallographie, Universität Wien, Geozentrum, Althanstraβe 14, A-1090 Wien, Austria

Abstract

During investigations of the system Sc2O3-Al2O3-TiO2-SiO2, a new, unusual microporous compound, Cs3ScSi8O19, was synthesized as colourless plates from a CsF-MoO3 flux. The crystal structure was determined from single-crystal X-ray diffraction data (Mo-Kα radiation, CCD area detector). The compound is orthorhombic, space group Pnma, with a = 11.286(2), b = 7.033(1), c = 26.714(5) Å, and Z = 4 (R1(F) = 2.6% and wR2all(F2) = 7.3%, using 3066 ‘observed’ reflections with Fo > 4σ(Fo)). The crystal structure of Cs3ScSi8O19 represents a new microporous framework structure type (‘MCV-1’), and the compound is exceptional in being the first representative of a mixed octahedral-tetrahedral framework structure, in which the [TO4]:[MO6] ratio is >6:1. The structure is based on isolated, nearly regular ScO6 octahedra [dav(Sc—O) = 2.112 Å] sharing corners with SiO4 tetrahedra to form an open framework with four-, six- and eight-membered rings; the latter are formed by SiO4 tetrahedra only. Two fully occupied Cs positions are located in large framework voids close to the six-membered rings, whereas four partly occupied and disordered Cs positions are close to very large framework voids bordered by the puckered eight-membered rings. The cavities are linked into channels parallel to [100] and [010]. The structure is compared with that of Cs2TiSi6O15 and related microporous scandium-, REE-, titano- and zirconosilicate minerals and compounds. Cs3ScSi8O19 or derivatives may be important in the context of immobilization of radioactive 137Cs waste, cationic conductivity or catalysis.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ananias, D., Rainho, J.P., Ferreira, A., Lopes, M., Morais, C.M., Rocha, J. and Carlos, L.D. (2002) Synthesis and characterization of Er(III) and Y(III) sodium silicates: Na3ErSi3O9, a new infrared emitter. Chemistry of Materials, 14, 17671772.CrossRefGoogle Scholar
Anderson, M.W. and Rocha, J. (2002) Synthesis of titanosilicates and related materials. Pp. 876903 in: Handbook of Porous Solids, Vol. 2 (Schüth, F., Sing, K.S.W. and Weitkamp, J., editors), John Wiley & Sons, Ltd, New York.CrossRefGoogle Scholar
Baur, W.H. (1981) Interatomic distance predictions for computer simulation of crystal structures. Pp. 3152 in: Structure and Bonding in Crystals, Vol. II (O’Keeffe, M. and Navrotsky, A., editors), Academic Press, New York.CrossRefGoogle Scholar
Bortun, A.I., Bortun, L.N., Poojary, D.M., Xiang, O. and Clearfield, A. (2000) Synthesis, characterization, and ion exchange behavior of a framework potassium titanium trisilicate K2TiSi3O9·H2O and its protonated phases. Chemistry of Materials, 12, 294305.CrossRefGoogle Scholar
Brese, N.E. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Brown, I.D. (1996) VALENCE: a program for calculating bond valences. Journal of Applied Crystallography, 29, 479480.CrossRefGoogle Scholar
Clearfield, A., Bortun, A.I., Bortun, L.N., Poojary, D.M. and Khainakov, S.A. (1998) On the selectivity regulation of K2ZrSi3O9·H2O-type ion exchangers. Journal of Molecular Structure, 470, 207213.CrossRefGoogle Scholar
Dadachov, M.S. and Le Bail, A. (1997) Structure of zeolitic K2TiSi3O9·H2O determined ab initio from powder diffraction data. European Journal of Solid State and Inorganic Chemistry, 34, 381390.Google Scholar
Filipenko, O.S., Dimitrova, O.V., Atovmyan, L.O. and Ponomarev, V.I. (1988) Hydrothermal synthesis and crystal structure of K6Lu2(Si6O18). Kristallografiya, 33, 11221127 (in Russian).Google Scholar
Filipenko, O.S., Atovmyan, L.O., Ponomarev, V.I., Dimitrova, O.V., Leonova, L.S. and Tkacheva, N.S. (1997) The effects of iso- and hetero-valence substitution on the structure and properties of solid electrolytes Na5LnSi4O12 . The crystal structures of Na5LnSi4O12 (Ln = Er, Tm, Lu, or Gd0.5 + Yb0.5) and Na4.68Ca0.16ErSi4O12. Russian Journal of Coordination Chemistry, 23, 422431.Google Scholar
Fischer, R.X. and Tillmanns, E. (1988) The equivalent is otropic displacement factor. A ct a Crystallographica, C44, 775776.Google Scholar
Grey, I.E., Roth, R.S. and Balmer, M.L. (1997) The crystal structure of Cs2TiSi6O15 . Journal of Solid State Chemistry, 131, 3842.CrossRefGoogle Scholar
Hesse, K.F., Liebau, F. and Merlino, S. (1992) Crystal structure of rhodesite, HK1–xNax+2yCa2–y﹛lB,3,22﹜ [Si8O19]·(6–z)H2O, from three localities and its relation to other silicates with dreier double layers. Zeitschrift für Kristallographie, 199, 2548.CrossRefGoogle Scholar
Huang, J., Wang, X., Liu, L. and Jacobson, A.J. (2002) Synthesis and characterization of an open framework vanadium silicate (VSH-16Na). Solid State Sciences, 4, 11931198.CrossRefGoogle Scholar
Ilyushin, G.D. (1993) New data on the crystal structure of umbite (K2ZrSi3O9·H2O). Neorganicheskie Materialy, 29, 971975 (in Russian).Google Scholar
Ilyushin, G.D. and Blatov, V.A. (2002) Crystal chemistry of zirconosilicates and their analogs: topological classification of MT frameworks and suprapolyhedral invariants. Acta Crystallographica, B58, 198218.CrossRefGoogle Scholar
Jale, S.R., Ojo, A. and Fitch, F.R. (1999) Synthesis of microporous zirconosilicates containing ZrO6 octahedra and SiO4 tetrahedra. Chemical Communications, 1999, 411412.CrossRefGoogle Scholar
Kolitsch, U. and Tillmanns, E. (2003a) Sc2 TiO5, an entropy-stabilized pseudobrookite-type compound. Acta Crystallographica, E59, i36i39.Google Scholar
Kolitsch, U. and Tillmanns, E. (2003b) Bi3ScMo2O12: the difference from Bi3FeMo2O12 . Acta Crystallographica, E59, i43i46.Google Scholar
Kolitsch, U. and Tillmanns, E. (2003c) Li3Sc(MoO4)3: substitutional disorder on three (Li,Sc) sites. Acta Crystallographica, E59, i55i58.Google Scholar
Kolitsch, U. and Tillmanns, E. (2003d) The crystal structure of synthetic Sc2Si2O7 at 100, 200 and 293 K: thermal expansion and behaviour of the Si2O7 group. Zeitschrift für Kristallographie, Supplement No. 20, 139.Google Scholar
Kolitsch, U. and Tillmanns, E. (2004) The structural relation between the new synthetic silicate K2ScFSi4O10 and narsarsukite, Na2(Ti,Fe3+) (O,F)Si4O10. European Journal of Mineralogy, 16, 143149.CrossRefGoogle Scholar
Liebau, F. (1985) Structural Chemistry of Silicates. Springer, Berlin.CrossRefGoogle Scholar
Lin, Z., Rocha, J., Branda˜o, P., Ferreira, A., Esculcas, A.P., Pedrosa de Jesus, J.D., Philippou, A. and Anderson, M.W. (1997) Synthesis and structural characterization of microporous umbite, penkvilksite, and other titanosilicates. Journal of Physical Chemistry, B101, 71147120.CrossRefGoogle Scholar
Lin, Z., Rocha, J., Ferreira, P., Thursfield, A., Agger, J.R. and Anderson, M.W. (1999a) Synthesis and structural characterization of microporous framework zirconium silicates. Journal of Physical Chemistry, B103, 957963.CrossRefGoogle Scholar
Lin, Z., Rocha, J. and Valente, A. (1999b) Synthesis and characterisation of a framework microporous stannosilicate. Chemical Communications, 1999, 24892490.CrossRefGoogle Scholar
Maksimov, B.A., Mel’nikov, O.K., Zhdanova, T.A. and Ilyukhin, V.V. (1980) Crystal structure of Na4Sc2Si4O13 . Doklady Akademii Nauk SSSR, 251, 98102 (in Russian).Google Scholar
Merinov, B.V., Maksimov, B.A., Kharitonov, Yu.A. and Belov, N.V. (1978) Crystal structure of the rare earth silicate Na5LuSi4O12 . Doklady Akademii Nauk SSSR, 240, 8184 (in Russian).Google Scholar
Merinov, B.V., Maksimov, B.A. and Belov, N.V. (1980) Crystal structure of Na5ScSi4O12 . Doklady Akademii Nauk SSSR, 255, 577582 (in Russian).Google Scholar
Nyfeler, D. and Armbruster, T. (1997) Silanol groups in minerals and inorganic compounds. American Mineralogist, 83, 119125.CrossRefGoogle Scholar
Nyman, M., Bonhomme, F., Teter, D.M., Maxwell, R.S., Gu, B.X., Wang, L.M., Ewing, R.C. and Nenoff, T.M. (2000a) Integrated experimental and computational methods for structure determination and characterization of a new, highly stable cesium silicotitanate phase, Cs2TiSi6O15 (SNL-A). Chemistry of Materials, 12, 34493458.CrossRefGoogle Scholar
Nyman, M., Gu, B.X., Wang, L.M., Ewing, R.C. and Nenoff, T.M. (2000b) Synthesis and characterization of a new microporous cesium silicotitanate (SNL-B) molecular sieve. Microporous and Mesoporous Materials, 40, 115125.CrossRefGoogle Scholar
Nyman, M., Bonhomme, F., Maxwell, R.S. and Nenoff, T.M. (2001) First Rb silicotitanate phase and its Kstructural analogue: new members of the SNL-A family (Cc-A2TiSi6O15; A = K, Rb, Cs). Chemistry of Materials, 13, 46034611.CrossRefGoogle Scholar
Otwinowski, Z. and Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods in Enzymology, 276, 307326.CrossRefGoogle ScholarPubMed
Poojary, D.M., Bortun, A.I., Bortun, L.N. and Clearfield, A. (1997) Syntheses and X-ray powder structures of K2(ZrSi3O9)·H2O and its ion-exchanged phases with Na and Cs. Inorganic Chemistry, 36, 30723079.CrossRefGoogle Scholar
Rocha, J. and Anderson, M.W. (2000) Microporous titanosilicates and other novel mixed octahedraltetrahedral framework oxides. European Journal of Inorganic Chemistry, 2000, 801818.3.0.CO;2-E>CrossRefGoogle Scholar
Shape Software (1999) ATOMS for Windows and Macintosh V5.0.4. Kingsport, TN 37663, USA.Google Scholar
Sheldrick, G.M. (1997a) SHELXS-97, a program for the solution of crystal structures. University of Göttingen, Germany.Google Scholar
Sheldrick, G.M. (1997b) SHELXL-97, a program for crystal structure refinement. University of Göttingen, Germany.Google Scholar
Valtchev, V., Paillaud, J.-L., Mintova, S. and Kessler, H. (1999) Investigation of the ion-exchanged forms of the microporous titanosilicate K2TiSi3O9·H2O. Microporous and Mesoporous Materials, 32, 287296.CrossRefGoogle Scholar
Vidican, I., Smith, M.D. and zur Loye, H.-C. (2003) Crystal growth, structure determination, and optical properties of new potassium-rare-earthsilicates K3RESi2O7 (RE = Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). Journal of Solid State Chemistry, 170, 203210.CrossRefGoogle Scholar
Zhao, Y.-N., Li, Y.-F., Zou, Y.-C., Mai, Z.-H. and Pang, W.-Q. (2002) Synthesis and characterization of titanosilicate withthe structure of umbite. Chemical Research in Chinese Universities, 18, 380384.Google Scholar
Supplementary material: PDF

Kolitsch and Tillmanns supplementary material

Structure factor data

Download Kolitsch and Tillmanns supplementary material(PDF)
PDF 123.2 KB