Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-10T11:29:48.163Z Has data issue: false hasContentIssue false

Vanadium, V – a new native element mineral from the Colima volcano, State of Colima, Mexico, and implications for fumarole gas composition

Published online by Cambridge University Press:  02 January 2018

M. Ostrooumov*
Affiliation:
Institute of Earth Sciences, University of Michoacan, Morelia, C.P. 58030, Mexico
Y. Taran
Affiliation:
National University of Mexico, Geophysical Institute, Mexico D.F., Mexico
*
*E-mail: ostroum@umich.mx

Abstract

Vanadium, V, is a new mineral found in sublimates of high-temperature fumaroles of the Colima volcano, Mexico. The mineral precipitates over a narrow temperature range of 550–680°C, and occurs in association with colimaite (K3VS4) and shcherbinaite (V2O5). Native vanadium was been found on the inner wall of an inserted silica tube and subsequently in the adjacent rock of the Z3 fumarole. Vanadium forms smooth, irregular to flattened crystals, 5–20 μm in diameter. Smaller irregular crystals have also been observed in silica tubes. Due to its small crystal size, its physical properties (hardness, cleavage and density) could not be determined. An EDS spectrum indicated the presence of V, Fe, Al and Ti with an empirical formula calculated on the basis of EPMA analyses of V0.86Fe0.09Al0.04Ti0.01. Gandolfi and glancing-angle X-ray diffraction data showed that the microcrystals were body-centred cubic, space group Im3̄m, a = 3.022(3) Å, V = 27.60 (5) Å3, Z = 2. The five strongest calculated diffraction lines are [ d spacings in Å, (I) (hkl)]: 2.1411 (100)(110), 1.5126 (12)(200), 1.2301 (19)(211), 0.9565 (8)(310) and 8.8090 (11)(321). The calculated density is 6.033 g cm–3. Thermochemical modelling was used to explain why very oxidized gas at Colima precipitates V-bearing minerals and some native elements (vanadium and gold). Vanadium, is the second newly recognized mineral species (after colimaite) collected from an active fumarole in this volcanic crater. The mineral and its name have been approved by the CNMNC (IMA 2012-021a).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armstrong, J.T. (1995) CITZAF: A package of correction programs for the quantitative electron microbeam X-ray analysis of thick polished materials, thin films, and particles. Microbeam Analysis, 4, 177177.Google Scholar
Connor, C.B., Clement, B.M., Song, X., Lane, S.B. and West Thomas, J. (1993) Continuous monitoring of high-temperature fumaroles on an active lava dome, volcano Colima, Mexico. Evidence of mass flow variation in response to atmospheric forcing. Journal of Geophysical Research, 98, 1971319722. Google Scholar
Gammons, C.H., Yu, Y and Williams-Jones, A.E. (1997) The disproportionation of gold chloride complexes at 25 to 200°C. Geochimica et Cosmochimica Acta, 54, 20512058. Google Scholar
Getachun, A., Reed, M.H. and Symonds, R.B. (1996) Mount St. Augustin volcano fumarole wall rock alteration: mineralogy, zoning, composition and numerical models of its formation. Journal of Volcanology and Geothermal Research, 71,73107 CrossRefGoogle Scholar
Ino, I. (1966) Epitaxial growth of metals on rocksalt faces cleaved in vacuum. II. Orientation and structure of gold particles formed in ultrahigh vacuum. Journal of the Japan Physical Society, 21, 346362 CrossRefGoogle Scholar
Kavalieris, I. (1994) High Au, Ag, Mo, Pb, V and W content of fumarolic deposits at Merapi volcano, Central Java, Indonesia. Journal of Geochemical Exploration, 50, 479491. CrossRefGoogle Scholar
Knacke, O., Kubaschewski, A. and Hesselman, K. (1991) Thermochemical properties of Inorganic Substances. Springer-Verlag, Berlin.Google Scholar
Korzhinsky, M., Tkachenko, S., Shmulovich, K. and Steinbeg, G. (1995) Native Al and Si formation. Nature, 375, Z6532, 355.CrossRefGoogle Scholar
Korzhinsky, M., Tkachenko, S., Bulgakov, R. and Shmulovich, K. (1996) Condensate compositions and native metals in sublimates of high-temperature gas streams of Kudryavy Volcano, Iturup Island, Kuril Islands. Geochemistry International, 36, 11751182 Google Scholar
Krivovichev, S., Vergasova, L., Britvin, S., Filatov, S., Kahlenberg, V and Ananiev, V (2007) Pauflerite, β-VO(SO4), a new mineral species from the Tolbachik Volcano, Kamchatka Peninsula, Russia. The Canadian Mineralogist, 45, 921927. CrossRefGoogle Scholar
Le Guern, F. and Bernard, A. (1982) A new method for sampling and analyzing volcanic sublimates. Application to Merapi volcano. Journal of Volcanology and Geothermal Research, 12, 133146. CrossRefGoogle Scholar
Luhr, J.F. (2002) Petrology and geochemistry of the 1991 and 1998-1999 lava flows from Volcán de Colima, México: implications for the end of the current eruptive cycle. Journal of Volcanology and Geothermal Research, 117,169194 CrossRefGoogle Scholar
Luhr, J.F. and Carmichael, I.S.E.. (1990) Geology of volcan Colima. Universidad Nacional Autónoma de México, Instituto de Geología, Boletin, 107.Google Scholar
Macias, J.L. (2005) Geología e historia eruptiva de algunos de los grandes volcanes activos de México. Boletín de la Sociedad Geologica Mexicana, LVII, 379–24.CrossRefGoogle Scholar
Macias, J., Saucedo, R., Gavilanes, J., Varley, N., Velasco, S., Bursik, M., Gutiérrez, V and Cortés, A. (2007) Flujos piroclásticos asociados a la actividad explosiva del Volcán de Colima y perspectivas futuras. GEOS, 25,340-340.Google Scholar
Meeker, K.A., Chuang, R.L., Kyle, P.R. and Palais, J.M. (1991) Emission of elemental gold particles from Mount Erebus, Ross Island, Antarctica. Geophysical Research Letters, 18, 14051408. CrossRefGoogle Scholar
Ostrooumov, M. (2001) Mineralogía Avanzada en México: conceptos, resultados, investigaciones futuras. Boletín de la Sociedad Mexicana de Mineralogía, 14, 716. Google Scholar
Ostrooumov, M. (2011) Minerales holotipos mexicanos. Sociedad Mexicana de Mineralogia, http://www. mineralog.net/.Google Scholar
Ostrooumov, M. (2013) Vanadium, IMA 2012-021a. CNMNC Newsletter No. 15, February 2013, page 11; Mineralogical Magazine, 77, 112.Google Scholar
Ostrooumov, M. and Taran, Y (2001) Paragénesis de las formaciones minerales recientes: minerales sublima-dos en el volcán Colima, México. Boletín de la Sociedad Mexicana de Mineralogía, 14, 3839 Google Scholar
Ostrooumov, M., Taran, Y., Arellano-Jimenez, M., Ponce, A. and Reyes-Gasga, J. (2009) Colimaite, a new potassium vanadium sulfide mineral from the Colima volcano, State of Colima (México). Revista Mexicana de Ciencias Geologicas, 25, 600609. Google Scholar
Quisefit, J.P., Toutain, J.P., Bergametti, G., Javoy, M., Cheynet, B. and Person, A. (1989) Evolution versus cooling of gaseous volcanic emissions from Momotombo volcano, Nicaragua: thermodynamical model and observations. Geochimica et Cosmochimica Acta, 53, 25912608. CrossRefGoogle Scholar
Roine, A. (2002) Chemical reaction and equilibrium software with extensive thermochemical database. Version 5.0. Outokumpu Research Oy, Pori, Finland.Google Scholar
Serafimova, E.K. (1979) Mineralogy of Sublimates of Kamchatkan Volcanoes. Science, Moscow.Google Scholar
Symonds, R. (1993) Scanning electron microscope observations of sublimates from Merapi volcano, Indonesia. Geochemical Journal, 26, 337350 CrossRefGoogle Scholar
Symonds, R.B. and Reed, M.H. (1993) Calculation of multicomponent chemical equilibria in solid-liquid systems: calculation methods, thermochemical data and applications to studies of high-temperature volcanic gases with examples from Mount St. Helens. American Journal of Science, 293,758864 CrossRefGoogle Scholar
Taran, Y., Hedenquist, J., Korzhinsky, M., Tkachenko, S. and Shmulovich, K. (1995) Geochemistry of mag-matic gases from Kudryavy volcano, Iturup, Kurile Islands. Geochimica et Cosmochimica Acta, 59, 17491761. CrossRefGoogle Scholar
Taran, Y., Bernard, A., Gavilanes, J.C. and Africano, F. (2000) Native gold in mineral precipitates from high-temperature volcanic gases of Colima volcano, México. Applied Geochemistry, 15, 337346. CrossRefGoogle Scholar
Taran, Y., Bernard, A., Gavilanes, J.C., Lounezheva, E., Cortés, A. and Armienta, M.A. (2001) Chemistry and mineralogy of high-temperature gas discharges from Colima volcano, México. Implications for the mag-matic gas-atmosphere interaction. Journal of Volcanology and Geothermal Research, 108,245264 CrossRefGoogle Scholar
Vergasova, L., Starova, G., Serafimova, E., Filatov, S., Filosofova, T and Dunin-Barkovskii, R. (2001) Native gold deposits from gas emanations of cinder cones produced by the Great Tolbachik fissure eruption. Volcanology and Seismology, 22,493504 Google Scholar
William-Jones, A.E., Migdisov, A.A., Archibald, S.M. and Xiao, Z. (2002) Vapor-transport of ore metals. Pp. 279-305 in: Water-Rock Interactions, Ore Deposits, and Environment Geochemistry. A Tribute to David A. Crera. (R. Hellmann and S.A. Wood editors). The Geochemical Society Special Publication, 7. The Geochemical Society, Washington DC, USA.Google Scholar
Zelenski, M. and Bortnikova, S. (2005) Sublimate speciation at Mutnovsky volcano, Kamchatka. European Journal of Mineralogy, 17, 107118 CrossRefGoogle Scholar
Zelenski, M., Fischer, T., Maarten de Moor, Bernard Marty, J., Zimmermann, L., Ayalewd, D., Nekrasov, A. and Karandashev, V (2013) Trace elements in the gas emissions from the Erta Ale volcano, Afar, Ethiopia. Chemical Geology, 357,95116 CrossRefGoogle Scholar