Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T12:17:00.823Z Has data issue: false hasContentIssue false

Zeolitic water in strunzite-group minerals

Published online by Cambridge University Press:  28 February 2018

Ian E. Grey*
Affiliation:
CSIRO Mineral Resources, Private Bag 10, Clayton, 3169, Victoria, Australia
Anthony R. Kampf
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA
*

Abstract

The crystal structures have been refined for the first time for the strunzite-group minerals ferristrunzite and ferrostrunzite. Structure refinements are also presented for strunzite from three different localities. A common feature of all refined structural models is the presence of zeolitic water in the interlayer region, displaced by 0.4–0.5 Å from an inversion centre at (½ 0 ½). The refined occupancy of the site ranged from 44% to 100% in the samples studied. H-bonding associated with the zeolitic water causes large displacements, up to 0.7 Å, of neighbouring coordinated water molecules, relative to the structure with no zeolitic water. A new formula is proposed for strunzite-group minerals with divalent interlayer cations as M2+ Fe23+(PO4)2(OH)2·(6.5–x)H2O where M = Mn, Fe or Zn, and 0 < x < 0.5 accounts for varying degrees of dehydration. For ferristrunzite and other potential strunzite-group members with trivalent cations in the interlayer octahedron, the formula is M3+ Fe23+ (PO4)2(OH)3·(5.5–x)H2O.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Ian Graham

References

Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 244247.Google Scholar
Correia Neves, J.M. (1960) Pegmatitos com berillo, columbite-tantalite e fosfatos da Bendada (Sabugai, Guarda). Memorias e Noticias. Publicacoes do Museu e Labaratorio Mineralogico e Geologico da Universidade de Coimbra e do Centro de Estudos Geologicos, 50, 172 p.Google Scholar
Fanfani, L., Tomassini, M., Zanazzi, P.F. and Zanzari, A.R. (1978) The crystal structure of strunzite, a contribution to the crystal chemistry of basic ferric-manganous hydrated phosphates. Tschermaks Mineralogische und Petrographische Mitteilungen, 25, 7787.Google Scholar
Frondel, C. (1957) Strunzit, ein neues Eisen-Mangan-Phosphat. Neues Jahrbuch für Mineralogie Monatshefte, 1958, 222226.Google Scholar
Frondel, C. (1958) Strunzite, a new mineral. Naturwissenschaften, 45, 3738.Google Scholar
Grey, I.E, MacRae, C.M., Keck, E. and Birch, W.D. (2012) Aluminium-bearing strunzite derived from jahnsite at the Hagendorf-Süd pegmatite, Germany. Mineralogical Magazine, 76, 11651174.Google Scholar
Grey, I.E., Keck, E., MacRae, C.M., Glenn, A.M., Kampf, A.R., Nash, B.P and Mills, S.J. (2017) Crystal chemistry of zinc incorporation in strunzite-group minerals containing zeolitic water. Mineralogical Magazine, 81, 10511062.Google Scholar
Higashi, T. (2001) ABSCOR, Rigaku Corporation, Tokyo.Google Scholar
Kampf, A.R., Grey, I.E., Alves, P., Mills, S.J., Nash, B.P., MacRae, C.M. and Keck, E. (2017) Zincostrunzite, ZnFe3+2(PO4)2(OH)2·6.5H2O, a new mineral from the Sitio do Castelo mine, Portugal, and the Hagendorf-Süd pegmatite, Germany. European Journal of Mineralogy, 29, 315322.Google Scholar
Peacor, D.R., Dunn, P.J. and Simmons, W.B. (1983) Ferrostrunzite, the ferrous iron analogue of strunzite from Mullica Hill, New Jersey. Neues Jahrbuch für Mineralogie Monatshefte, 1983, 524528.Google Scholar
Peacor, D.R., Dunn, P.J., Simmons, W.B. and Ramik, R.A. (1987) Ferristrunzite, a new member of the strunzite group, from Blaton, Belgium. Neues Jahrbuch für Mineralogie Monatshefte, 1987, 453457.Google Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Van Tassel, R. (1966) Mineraux secondaires phosphatés ferrifères (strunzite, beraunite, phosphosidérite, cacoxénite) de Blaton, Hainaut. Bulletin de la Société Belge de Géologie, 75, 3848.Google Scholar
Van Tassel, R. and de Grave, E. (1992) Ferrostrunzite from Arnsberg, Sauerland, Germany. Neues Jahrbuch für Mineralogie Monatshefte, 1992, 207212.Google Scholar
Supplementary material: File

Grey and Kampf supplementary material

Supplementary material 1

Download Grey and Kampf supplementary material(File)
File 389.8 KB
Supplementary material: File

Grey and Kampf supplementary material

Supplementary material 2

Download Grey and Kampf supplementary material(File)
File 370.2 KB
Supplementary material: File

Grey and Kampf supplementary material

Supplementary material 3

Download Grey and Kampf supplementary material(File)
File 284.6 KB
Supplementary material: File

Grey and Kampf supplementary material

Supplementary material 4

Download Grey and Kampf supplementary material(File)
File 287.6 KB
Supplementary material: File

Grey and Kampf supplementary material

Supplementary material 5

Download Grey and Kampf supplementary material(File)
File 19.2 KB