Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T11:34:21.961Z Has data issue: false hasContentIssue false

Zincian staurolite in Glen Doll, Scotland

Published online by Cambridge University Press:  05 July 2018

Renate Schumacher*
Affiliation:
Mineralogisch-Petrologisches Institut, Universität Bonn, 5300 Bonn, W. Germany

Abstract

Textures and relict mineralogy in the Dalradian gneisses from the southern contact aureole of the Glen Doll diorite trace the development of three stages of metamorphism through regional and contact metamorphic phases. Regional metamorphic stage I is characterized by the stability of sillimanite+muscovite; recognition of a subsequent regional metamorphic stage II of lower grade is based on textural criteria, the stability of kyanite and staurolite + quartz, and geothermometry/geobarometry. The breakdown of zincian staurolite occurred under the conditions of contact metamorphism (stage III). Textural evidence from the outer part of the contact aureole suggests that zincian staurolite broke down by the following oxidation reaction:

zincian staurolite + muscovite + quartz + O2 → andalusite + Zn-rich spinel + magnetite + biotite + H2O.

Various stages of completion of this reaction have been observed in different parts of a sample. Predominance of magnetite over Zn-rich spinel (⩽ 14 wt. % ZnO) as a breakdown product can be explained by the initial breakdown of Fe-staurolite component + muscovite + quartz+O2 to form andalusite+biotite+magnetite. These product phases were joined by the Zn-rich spinel when sufficient Zn-staurolite component had concentrated in the unreacted staurolite. Rare local examples where Zn-rich spinel is dominant over magnetite may reflect lower O2 fugacity and/or higher initial Zn contents of the staurolite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albee, A. L. (1972) Bull. Geol. Soc. Am. 83, 3249-68.CrossRefGoogle Scholar
Atkin, B. P. (1978) Mineral. Mag. 42, 237-9.CrossRefGoogle Scholar
Barrow, G. (1893) Q. J. Geol. Soc. Lond. 49, 330-58.CrossRefGoogle Scholar
Barrow, G. (1912a) Proc. Geol. Ass. 23, 268-73.CrossRefGoogle Scholar
Barrow, G. (1912b) Mere. Geol. Surv. Scotl. 1138.Google Scholar
Bradbury, H. J. (1979) In The Caledonides of the British Isles—reviewed (Harris, Holland, and Leake, eds.), 351-6.Google Scholar
Carmichael, D. M. (1969) Contrib. Mineral. Petrol. 20, 244-67.CrossRefGoogle Scholar
Chatterjee, N. D., and Johannes, W. (1974) Ibid. 48, 89-114.Google Scholar
Chinner, G. A. (1960) J. Petrol. 1, 178217.CrossRefGoogle Scholar
Chinner, G. A. (1962) Ibid. 3, 316-40.Google Scholar
Chinner, G. A. (1965) Mineral. Mag. 34, 316-40.Google Scholar
Chinner, G. A. (1966) Q. J. Geol. Soc. Lond. 122, 159-86.CrossRefGoogle Scholar
Chinner, G. A. (1978) In Petrology for students (Nockolds, S. R., Knox, R. W. O. B., and Chinner, G. A., eds.) 343-427.Google Scholar
Dietvorst, E. J. L. (1980) Contrib. Mineral. Petrol. 75, 327-37.CrossRefGoogle Scholar
Dürig, R. (1981) Geologie und Petrographie der regional- und kontaktmetamorphen Gesteinsserien in Glen Clova, Kaledoniden, Schottland. Unpubl. Diplom. thesis, Univers. Kiel.Google Scholar
Ferry, J. M., and Spear, F. S. (1978) Contrib. Mineral. Petrol. 66, 113-17.CrossRefGoogle Scholar
Ganguly, J. (1972) J. Petrol. 13, 335-65.CrossRefGoogle Scholar
Ghent, E. D. (1977) In Short Course applications of thermodynamics to petrology and ore deposits (Greenwood, H. J., ed.) Mineral. Ass. Can. 99-108.Google Scholar
Guidotti, C. V. (1965) Geol. Soc. Am. Abstracts, Fresno Mtg. 27, 1786.Google Scholar
Guidotti, C. V. (1970) J. Petrol. 11, 277-336.CrossRefGoogle Scholar
Haak, U. K. (1969) Contrib. Mineral. Petrol. 22, 83-126.CrossRefGoogle Scholar
Haak, U. K., Heinrichs, M., BoneB, M., and Schneider, A. (1984) Ibid. 85, 116-32.Google Scholar
Harris, A. L., and Pitcher, W. S. (1975) In A correlation of the Precambrian rocks in the British Isles (Harris, A. L., ed.) Geol. Soc. Lond. Spec. Rept. 6, 52-75.Google Scholar
Harte, B., and Johnson, M. R. W. (1968) Scott. J. Geol. 5, 54-80.CrossRefGoogle Scholar
Haselton, H. T., and Newton, R. C. (1980) J. Geophys. Res. 85, 6973-82.CrossRefGoogle Scholar
Hess, P. C. (1969) Contrib. Mineral. Petrol. 24, 191-207.CrossRefGoogle Scholar
Holdaway, M. J. (1971) Am. J. Sci. 271, 97-131.CrossRefGoogle Scholar
Holdaway, M. J. and Lee, S. M. (1977) Contrib. Mineral. Petrol. 63, 175-98.CrossRefGoogle Scholar
Hoschek, G. (1969) Ibid. 22, 208-32.Google Scholar
Huang, W. L., and Wyllie, P. J. (1974) Am. J. Sci. 274, 378-95.CrossRefGoogle Scholar
Johnson, M. R. W. (1963) Geol. en. Mijn. 42, 121-42.Google Scholar
Kwak, T. A. W. (1974) Contrib. Mineral. Petrol. 22, 208-32.Google Scholar
Loomis, T. P. (1972) Geol. Soc. Am. Bull. 83, 2449-74.CrossRefGoogle Scholar
Newton, R. C., and Haselton, H. T. (1981) In Thermodynamics of minerals and melts (Newton, R. C., Navrotsky, A., and Wood, B. J., eds.) 304 pp.CrossRefGoogle Scholar
Richardson, S. W. (1968) J. Petrol. 9, 468-88.CrossRefGoogle Scholar
Stoddard, E. F. (1979) Am. Mineral. 64, 736-41.Google Scholar
Thompson, A. L. (1976) Am. J. Sci. 276, 425-54.CrossRefGoogle Scholar
van de Kamp, J. A. (1970) J. Geol. 78, 281303.CrossRefGoogle Scholar
Yardley, B. W. D., and Long, C. B. (1981) Mineral. Mag. 44, 125-31.CrossRefGoogle Scholar