Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T14:00:03.540Z Has data issue: false hasContentIssue false

3D Printed Edible Hydrogel Electrodes

Published online by Cambridge University Press:  11 December 2015

Alex Keller*
Affiliation:
Soft Materials Group, School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia.
Leo Stevens
Affiliation:
Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia.
Gordon G. Wallace
Affiliation:
Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia.
Marc in het Panhuis
Affiliation:
Soft Materials Group, School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia. Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia.
Get access

Abstract

We report on a hand-held reactive printing device used to pattern highlyconductive, edible hydrogel wires formed from gellan gum, gelatin, cross-linkersand a common salt (NaCl). The conductivity of the gels when printed (190± 20 mS/cm) closely matched the conductivity recorded for cast systems(200 ± 19 mS/cm). Printing was observed to reduce the elastic modulusand failure strains of hydrogels under compression, but printed gels retainedsufficient integrity for application as flexible conductive lines. Wedemonstrate that hand-held printing can utilize to pattern soft conductorelements within a simple electronic circuit.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alandete Germán, S.P., Isarria Vidal, S., Domingo Montañana, M.L., De la vía Oraá, E., and Vilar Samper, J., Eur. J. Radiol., 84, 3 (2015).Google Scholar
McDermott, H.J., Trends Amplif., 8, 2 (2004).Google Scholar
Sohail, M.R., Uslan, D.Z., Khan, A.H., Friedman, P.A., Hayes, D.L., Wilson, W.R., Steckelberg, J.M., Stoner, S.M., and Baddour, L.M., Clin. Infect. Dis., 45, 2 (2007).Google Scholar
Zhao, K., Yan, G., Lu, L., and Xu, F., J. Med. Syst., 39, 2, (2015).CrossRefGoogle Scholar
Zhuang, Y., Hou, W., Zheng, X., Wang, Z., Zheng, J., Pi, X., Cui, J., Jiang, Y., Qian, S., and Peng, C., Sensors Actuators A Phys., 169, 1 (2011).Google Scholar
Rondonotti, E., Herrerias, J.M., Pennazio, M., Caunedo, A., Mascarenhas-Saraiva, M., and de Franchis, R., Gastrointest. Endosc., 62, 5 (2005).Google Scholar
Kim, Y.J., Wu, W., Chun, S.E., Whitacre, J.F., and Bettinger, C.J., Proc. Natl. Acad. Sci., 110, 52 (2013).Google Scholar
Kim, Y.J., Chun, S.-E., Whitacre, J., and Bettinger, C.J., J. Mater. Chem. B, 1, 31 (2013).Google Scholar
Morris, E.R., Nishinari, K., and Rinaudo, M., Food Hydrocoll., 28, 2 (2012).CrossRefGoogle Scholar
Lee, K.Y. and Mooney, D.J., Prog. Polym. Sci., 37, 1 (2012).Google Scholar
Bakarich, S.E., in het Panhuis, M., Beirne, S., Wallace, G. G., and Spinks, G. M., J. Mater. Chem. B, 1, 38 (2013).CrossRefGoogle Scholar
Kirchmajer, D.M., Watson, C.A., Ranson, M., and in het Panhuis, M., RSC Adv., 3, 4 (2013).CrossRefGoogle Scholar
Joly-Duhamel, C., Hellio, D., and Djabourov, M., Langmuir, 18, 19, (2002).Google Scholar
Sun, J.Y., Zhao, X.H., Illeperuma, W.R.K., Chaudhuri, O., Oh, K.H., Mooney, D.J., Vlassak, J.J., and Suo, Z.G., Nature, 489, 7414 (2012).Google Scholar
Bakarich, S.E., Pidcock, G.C., Balding, P., Stevens, L., Calvert, P. and in het Panhuis, M., Soft Matter 8, 9985 (2012).Google Scholar
Kirchmajer, D. M. and in het Panhuis, M., J. Mater. Chem. B, 2, 29 (2014).CrossRefGoogle Scholar
Lozano, R., Stevens, L., Thompson, B.C., Gilmore, K.J., Gorkin, R. III, Stewart, E.M., in het Panhuis, M., Romero-Ortega, M. and Wallace, G.G., Biomaterials, 67, (2015).CrossRefGoogle Scholar
Warren, H., Gately, R.D., O’Brien, P., Gorkin, R. III, and in het Panhuis, M., J. Polym. Sci. Part B Polym. Phys., 52, 13 (2014).Google Scholar
Keller, A., Benz, D., and in het Panhuis, M., MRS Online Proc. Libr., 1795, (2015).Google Scholar
Stevens, L.R., Gorkin, R. III, Lozano, R, Gilmore, K.J., in het Panhuis, M. and Wallace, G.G., Biofabrication (submitted), (2015).Google Scholar