Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-29T03:03:45.207Z Has data issue: false hasContentIssue false

3D-Printed Nanoporous Scaffolds Impregnated with Zoledronate for the Treatment of Spinal Bone Metastases

Published online by Cambridge University Press:  11 March 2019

Elie Akoury
Affiliation:
Department of Surgery, Division of Orthopaedics, McGill University and The Research Institute of the McGill University Health Centre, Injury Repair Recovery Program, Montreal, QC.
Michael H. Weber
Affiliation:
Department of Surgery, Division of Orthopaedics, McGill University and The Research Institute of the McGill University Health Centre, Injury Repair Recovery Program, Montreal, QC.
Derek H. Rosenzweig*
Affiliation:
Department of Surgery, Division of Orthopaedics, McGill University and The Research Institute of the McGill University Health Centre, Injury Repair Recovery Program, Montreal, QC.
*
*To whom correspondence should be addressed.derek.rosenzweig@mcgill.ca
Get access

Abstract:

Zoledronate (Zol) is a bone-preserving/ anti-tumoral drug that is widely used for the treatment of many cancers including spinal bone metastases. High systemic Zol doses required to elicit an adequate effect in the spine often lead to significant side effects, limiting its prolonged use and effectiveness. Here, we aim to provide an alternative strategy to locally deliver Zol at the tumor site. We show that nanoporous 3D-printed scaffolds can be loaded with Zol and possess the ability to release Zol (10-28%) over a sustained period. Additionally, we demonstrate that Zol-impregnated scaffolds, mostly Gel Lay, impair the proliferation of the prostate cancer cell line LAPC4 and the prostate-induced bone metastasis cells in vitro. 3D-printed nanoporous polymers offer a novel and versatile opportunity for potential local delivery of drugs in future clinical settings. These polymers can decrease systemic exposure and related side effects of Zol while at the same time concentrating the drug effect at the tumor site thereby inhibiting tumor proliferation. Also, these scaffolds could be co-printed or coupled with other materials to produce custom implants that offer better structural support for bone growth at the tumor site following resection.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Coleman, R. E. and McCloskey, E. V., Bone 49 (1), 7176 (2011).CrossRefGoogle Scholar
Rose, P. S., Clarke, M. J. and Dekutoski, M. B., Int J Surg Oncol 2011, 494381 (2011).Google Scholar
Volkova, M. and Russell, R. 3rd, Curr Cardiol Rev 7 (4), 214-220 (2011).CrossRefGoogle Scholar
Drake, M. T., Clarke, B. L. and Khosla, S., Mayo Clin Proc 83 (9), 1032-1045 (2008).CrossRefGoogle Scholar
Gangi, A., Kastler, B., Klinkert, A. and Dietemann, J. L., J Comput Assist Tomogr 18 (6), 932-935 (1994).CrossRefGoogle Scholar
Hernigou, P., Thiery, J. P., Benoit, J., Voisin, M. C., Leroux, P., Hagege, G., Delepine, G. and Goutallier, D., J Bone Joint Surg Br 71 (5), 804-811 (1989).CrossRefGoogle Scholar
Bas, T., Aparisi, F. and Bas, J. L., Spine (Phila Pa 1976) 26 (14), 1577-1582 (2001).CrossRefGoogle Scholar
Cotten, A., Demondion, X., Boutry, N., Cortet, B., Chastanet, P., Duquesnoy, B. and Leblond, D., Radiographics 19 (3), 647-653 (1999).CrossRefGoogle Scholar
Gronemeyer, D. H. and Seibel, R. M., Wien Med Wochenschr 143 (12), 312-321 (1993).Google Scholar
Nooh, A., Zhang, Y. L., Sato, D., Rosenzweig, D. H., Tabaries, S., Siegel, P., Barralet, J. E. and Weber, M. H., J Bone Oncol 6, 8-15 (2017).CrossRefGoogle Scholar
Benyettou, F., Alhashimi, M., O’Connor, M., Pasricha, R., Brandel, J., Traboulsi, H., Mazher, J., Olsen, J. C. and Trabolsi, A., ACS Appl Mater Interfaces 9 (46), 40006-40016 (2017).CrossRefGoogle Scholar
Ma, H., Li, T., Huan, Z., Zhang, M., Yang, Z., Wang, J., Chang, J. and Wu, C., NPG Asia Materials 10 (4), 31-44 (2018).CrossRefGoogle Scholar
Ahangar, P., Akoury, E., Ramirez Garcia Luna, A. S., Nour, A., Weber, M. H. and Rosenzweig, D. H., Materials (Basel) 11 (9) (2018).CrossRefGoogle Scholar
Akoury, E., Ahangar, P., Nour, A., Lapointe, J., Guérard, K. P., Haglund, L., Rosenzweig, D. H. and Weber, M. H., Cancer Cell International (2019).Google Scholar
Ramanlal Chaudhari, K., Kumar, A., Megraj Khandelwal, V. K., Ukawala, M., Manjappa, A. S., Mishra, A. K., Monkkonen, J. and Ramachandra Murthy, R. S., J Control Release 158 (3), 470-478 (2012).CrossRefGoogle Scholar
Koto, K., Murata, H., Sawai, Y., Ashihara, E., Horii, M. and Kubo, T., Oncol Lett 14 (2), 1648-1656 (2017).CrossRefGoogle Scholar
Lu, Y., Li, M., Li, L., Wei, S., Hu, X., Wang, X., Shan, G., Zhang, Y., Xia, H. and Yin, Q., Mater Sci Eng C Mater Biol Appl 82, 225-233 (2018).CrossRefGoogle Scholar
Rosenzweig, D. H., Carelli, E., Steffen, T., Jarzem, P. and Haglund, L., Int J Mol Sci 16 (7), 15118-15135 (2015).CrossRefGoogle Scholar
Jalani, G., Naccache, R., Rosenzweig, D. H., Haglund, L., Vetrone, F. and Cerruti, M., J Am Chem Soc 138 (3), 1078-1083 (2016).CrossRefGoogle Scholar
Xue, W., Bandyopadhyay, A. and Bose, S., J Biomed Mater Res B Appl Biomater 91 (2), 831-838 (2009).CrossRefGoogle Scholar
Hong, M.-H., Hong, H. J., Pang, H., Lee, H.-J., Yi, S. and Koh, W.-G., ACS Biomaterials Science & Engineering 4 (2), 576-586 (2018).CrossRefGoogle Scholar