Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T19:24:54.584Z Has data issue: false hasContentIssue false

Bismuth-Antimony mixed double perovskites Cs2AgBi1-xSbxBr6 in solar cells

Published online by Cambridge University Press:  04 November 2019

Martina Pantaler*
Affiliation:
Institute for Materials Science and Center for Nanointegration Duisburg-Essen (CENIDE) University of Duisburg-Essen, Universitätsstraße 15, 45151Essen, Germany
Selina Olthof
Affiliation:
Department of Chemistry, University of Cologne, Luxembourger Straße 116, 50939 Köln
Klaus Meerholz
Affiliation:
Department of Chemistry, University of Cologne, Luxembourger Straße 116, 50939 Köln
Doru C. Lupascu
Affiliation:
Institute for Materials Science and Center for Nanointegration Duisburg-Essen (CENIDE) University of Duisburg-Essen, Universitätsstraße 15, 45151Essen, Germany
Get access

Abstract

Reported conversion efficiencies of lead based perovskite solar cells keep increasing steadily. But next to the demand for high efficiency, the need for analogue non-toxic material systems remains. One promising lead free absorber material is the double perovskite Cs2AgBiBr6. Interest in this and other double perovskites has been increasing in the last three years and several solar cells using different device structures have been reported. However, the efficiency of these solar cells is merely in the range of 2%. To further improve solar cell performance we prepared mixed bismuth-antimony double perovskite Cs2AgBi1-xSbxBr6 where different fractions of antimony (x=0.125, 0.25, 0.375, 0.50) are used. This was motivated by reports of lower bandgap values in these mixed system. After the optimization of preparation of these thin films, we have carefully analysed the effects on the structure, composition, electronic structure, as well as optical properties. Finally, we have fabricated Bi-Sb mixed double perovskite solar cells in a mesoscopic device architecture.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zhu, X., Lin, Y., San Martin, J., Sun, Y., Zhu, D., and Yan, Y., Nat. Commun. 10, 2843 (2019).CrossRefGoogle Scholar
Slavney, A. H., Hu, T., Lindenberg, A. M., and Karunadasa, H. I., J. Am. Chem. Soc. 138, 21382141 (2016).10.1021/jacs.5b13294CrossRefGoogle Scholar
Greul, E., Petrus, M. L., Binek, A., Docampo, P., and Bein, T., J. Mater. Chem. A, 5, 1997219981 (2017).10.1039/C7TA06816FCrossRefGoogle Scholar
Pantaler, M., Cho, K. T., Queloz, V. I. E., García Benito, I., Fettkenhauer, C., Anusca, I., Nazeeruddin, M. K., Lupascu, D. C., and Grancini, G., ACS Energy Lett. 3, 17811786 (2018).CrossRefGoogle Scholar
Slavney, A. H., Leppert, L., Bartesaghi, D., Gold-Parker, A., Toney, M. F., Savenije, T. J., Neaton, J. B., and Karunadasa, H. I., J. Am. Chem. Soc. 139, 5015-5018 (2017).CrossRefGoogle Scholar
Du, K.-Z., Meng, W., Wang, X., Yan, Y., and Mitzi, D. B., Angew. Chem. Int. Ed. Engl, 56, 81588162 (2017).CrossRefGoogle Scholar
Hutter, E. M., Gélvez-Rueda, M. C., Bartesaghi, D., Grozema, F. C., and Savenije, T. J., ACS Omega, 3, 1165511662 (2018).CrossRefGoogle Scholar
Slouka, C., Kainz, T., Navickas, E., Walch, G., Hutter, H., Reichmann, K., and Fleig, J., Materials (Basel), 9 (2016).Google Scholar
Tao, S., Schmidt, I., Brocks, G., Jiang, J., Tranca, I., Meerholz, K., and Olthof, S., Nat. Commun. 10, 2560 (2019).CrossRefGoogle Scholar