Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-01T03:04:28.697Z Has data issue: false hasContentIssue false

Development of Modified Electrodes Based on Self Assembled Films of Polypirrole and Carbon Nanotubes Composites for Pesticides Monitoring

Published online by Cambridge University Press:  03 May 2016

Gabriela Martins de Araújo
Affiliation:
Departamento de Ciências do Mar, Universidade Federal de São Paulo, Av. Almirante Saldanha da Gama, 89. CEP 11030-400, Santos – SP, Brazil
Luis Antonio Polacci
Affiliation:
Departamento de Ciências do Mar, Universidade Federal de São Paulo, Av. Almirante Saldanha da Gama, 89. CEP 11030-400, Santos – SP, Brazil
Tatiana Mazo
Affiliation:
Departamento de Ciências do Mar, Universidade Federal de São Paulo, Av. Almirante Saldanha da Gama, 89. CEP 11030-400, Santos – SP, Brazil
Lúcia Codognoto
Affiliation:
Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, Rua Prof. Arthur Riedel, 275, CEP 09972-270, Diadema – SP, Brazil.
Fábio Ruiz Simões*
Affiliation:
Departamento de Ciências do Mar, Universidade Federal de São Paulo, Av. Almirante Saldanha da Gama, 89. CEP 11030-400, Santos – SP, Brazil
Get access

Abstract

In this work polypyrrole (PPy) and its respective composite with functionalized multiwalled carbon nanotubes (PPy-MWCNT) was obtained by the chemical polymerization of the monomer pyrrole (PPy) in aqueous solution by the dropwise addition of a solution of ammonium persulfate (PSA). The obtained PPy as well as its composite (PPy-MWCNT) were used to prepare two self-assembled films (SA) by the immersion of ITO blades (Inidium Tin Oxide) into PPy and PPy-MWCNT dispersions with alternated immersions into Polystyrene sulfonate (PSS) dispersion, thus resulting in a bilayer. The SA films were produced with ten bilayers (alternated layers of PPy or its composite). The obtained films were characterized by Fourrier Transformed Infrared Spectroscopy (FTIR), UV-Visible analysis, voltammetric analyses (square wave and cyclic voltammetry) and Scanning Electron Microscopy (SEM). The SA films were evaluated to determine the chlorothalonil pesticide which is commonly used as anti-fouling agent in marine environments. The SWV results showed a reduction peak at around -0.8 to 1.2 V (according to pH). It was also observed a synergic effect of the composite film (PPy-MWCNT/PSS) to determine the chlorothalonil by increase of the peak currents.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Maia Bila, D.; Dezotti, M. Quimica Nova 2007, 30, 651666.Google Scholar
Bila, D. M.; Dezotti, M. Quimica Nova 2003, 26, 523530.Google Scholar
Martinez, K.; Barcelo, D. Fresenius J. Anal. Chem. 2001, 370, 940945.Google Scholar
Voulvoulis, N.; Scrimshaw, M. D.; Lester, J. N. Chemosphere 1999, 38, 35033516.Google Scholar
Simões, F. R.; Mattoso, L. H. C.; Vaz, C. M. P. Sens. Lett. 2006, 4, 319324.Google Scholar
Xia, L.; Wei, Z.; Wan, M. J. Colloid Interface Sci. Jan 1, 341, 111.Google Scholar
Li, C.; Thostenson, E. T.; Chou, T.-W. Compos. Sci. Technol. 2008, 68, 12271249.Google Scholar
Valentini, F.; Orlanducci, S.; Terranova, M. L.; Amine, A.; Palleschi, G. Sens. Actuators B-Chem. 2004, 100, 117125 Google Scholar
Vercelli, B.; Zotti, G.; Berlin, A.; Grimoldi, S. Chem. Mater. 2006, 18, 37543763.Google Scholar
Feng, J.; Yan, W.; Zhang, L. Microchim Acta 2009, 166, 261267 Google Scholar
Ge, H. L.; Ho, O. L.; Yang, X. H. Environ. Monit. Assess. 1997, 44, 361367.Google Scholar
Nohria, R.; Khillan, R.K.; Su, Y.; Lvoc, Y.;Vakahramyan, K. Nanotech.2005, 2, 422425.Google Scholar
Siqueira, J.R. Jr; Caseli, L.; Crespilho, F.N.; Zucolotto, V.; Oliveira, O. N Jr. Biosensors and Bioelectronics 2010, 25, 12541263.Google Scholar
Palazzo, F.; Codognoto, L.; Simões, F. R. Sens. Lett. 2013, 11, 23102314.Google Scholar
Lim, J. H.; Phiboolsirichit, N.; Mubeen, S.; Deshusses, M. A.; Mulchandani, A.; Myung, N. V. Nanotechnology. 2010, 21, 7550275509.Google Scholar
Lee, K. P.; Komathi, S.; Nam, N. J.; Gopalan, A. I. Microchem. J. 95, 7479.Google Scholar
Chen, D. Q.; Chen, C. H. Z.; Du, D. J. Nanosci. Nanotechnol. 2010, 10, 56625666.Google Scholar
Silva, J. S.; Barros, A.; Constantino, C. J. L.; Simoes, F. R.; Ferreira, M. J. Nanosci. Nanotechnol. 2014, 14, 65866592.Google Scholar
He, L. F.; Jia, Y.; Meng, F. L.; Li, M. Q.; Liu, J. H. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 2009, 163, 7681.Google Scholar
Li, Y.; Wang, H. C.; Cao, X. H.; Yuan, M. Y.; Yang, M. J. Nanotechnology 2008, 19, 015503.Google Scholar
Yin, T. J.; Wei, W. Z.; Zeng, J. X. Anal. Bioanal. Chem. 2006, 386, 20872094.Google Scholar
Silva, J. S.; Barros, A.; Constantino, C. J. L.; Simoes, F. R.; Ferreira, M. J. Nanosci. Nanotechnol. 2014, 14, 65866592 Google Scholar
Rosa, T.; Aroeira, G. J. R.; Parreira, L. S.; Codognoto, L.; Santos, M. C.; Simões, F. R. Synthetic Met, 2015, (http://dx.doi.org/10.1016/j.synthmet.2015.09.018) in press, (accessed on 2015-11-19)Google Scholar
Arsalani, N.; Geckeler, K. E.; Reactive & Functional Polymers. 1997, 33, 167172 CrossRefGoogle Scholar
Jang, K.S.; Lee, H.; Moon, B. Synthetic Met. 2004, 143, 289294 CrossRefGoogle Scholar
Lamprakopoulos, S.; Yfantis, D.; Yfantis, A.; Schmeisser, , Anastassopoulou, D.; Theophanides, J. T. Synthetic Met. 2004, 144, 229234 Google Scholar
Shiigi, H.; Kishimoto, M.; Yakabe, H.; Deore, B. Analythical Science 2002, 18, 4144.Google Scholar
Abdulla, H.S.; Abbo, A.I. Int. J. Electrochem. Sci. 2012, 7 1066610678 CrossRefGoogle Scholar
França, R.; Oliveira, H. P. M.; Codognoto. Estudo eletroanalitico de clorotalonil sobre eletrodos de diamante dopado com boro. Abstracts from 34th annual meeting of Brazilian Chemical Society, 2011, (CD-Room).Google Scholar