Published online by Cambridge University Press: 13 November 2018
This paper presents the results of a study on the impact of a precipitation hardening treatment on the mechanical properties of 17-4PH stainless steel open-cell foams produced using a powder-metallurgy-based process patented by the National Research Council Canada (NRC). Pre-alloyed powder was used to manufacture stainless steel (SS) foams with either medium or high porosity by changing the nature of the organic binder used to process the porous materials. Some of these were kept in the as-sintered state, while others were submitted to the H900 precipitation hardening treatment frequently prescribed for 17-4PH stainless steels.
Metallurgical and physical characterization was carried out on the resulting materials, along with mechanical testing at the micro (indentation testing) and macro (compressive testing) scales. It was found that the Medium-Porosity Foams (MPF) and High-Porosity Foams (HPF) had very different morphologies, the HPFs having a delicate porous structure featuring thin sintered walls with many openings (a.k.a. windows) between the main cells, while the MPFs exhibited much thicker walls with few windows connecting the larger pores. As expected from these foam morphologies, the mechanical properties of MPFs were much higher than those of the more porous and delicate HPF materials. For both foam types, the average mechanical properties were improved by the H900 treatment. A comparison with compressive properties of 17-4PH foams taken from the literature resulted in reasonable agreement. However, the large scatter observed on the average compressive properties of the NRC foams and the slightly different structure/composition of the literature materials mean that any comparison between these porous alloys must be interpreted with caution.