Published online by Cambridge University Press: 19 July 2019
Coupling semiconductors with electrochemical processes can lead to unusual materials, and attractive, practical device configurations. This work examines the reaction mechanism for single-step electrodeposition approach that creates device quality copper-indium-selenide (CISe) films with either polycrystalline or nanocrystalline morphologies on Cu and steel foils, respectively. The polycrystalline CISe film grows from In3+/Se4+ solution on Cu foil as Cu→ CuxSe→ CuInSe2; it may be used in standard planar pn devices. The nanocrystalline CISe film grown from Cu+/In3+/Se4+ solution follows the CuSe(In)→ CuInSe2→ CuIn3Se5 sequence. The latter approach leads to naturally ordered, space-filling nanocrystals, comprising interconnected 3-dimensional network of sharp, abrupt, p-CISe/n-CISe bulk homojunctions with extraordinary electro-optical attributes. Sandwiching these films between band-aligned contact electrodes can lead to high performance third generation devices for solar cells, light emitting diodes or photoelectrodes for fuel cells. Both approaches produce self-stabilized CISe absorbers that avoid recrystallization steps and can be roll-to-roll processed in simple flexible thin-film form factor for easy scale-up.