Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T20:48:44.810Z Has data issue: false hasContentIssue false

The electron transport that occurs within wurtzite zinc oxide and the application of stress

Published online by Cambridge University Press:  11 May 2017

Poppy Siddiqua
Affiliation:
School of Engineering, The University of British Columbia, Kelowna, British Columbia, Canada V1V 1V7
Michael S. Shur
Affiliation:
Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180-3590, U.S.A.
Stephen K. O’Leary*
Affiliation:
School of Engineering, The University of British Columbia, Kelowna, British Columbia, Canada V1V 1V7
Get access

Abstract

We examine how stress has the potential to shape the character of the electron transport that occurs within ZnO. In order to narrow the scope of this analysis, we focus on a determination of the velocity-field characteristics associated with bulk wurtzite ZnO. Monte Carlo simulations of the electron transport are pursued for the purposes of this analysis. Rather than focusing on the impact of stress in of itself, instead we focus on the changes that occur to the energy gap through the application of stress, i.e., energy gap variations provide a proxy for the amount of stress. Our results demonstrate that stress plays a significant role in shaping the form of the velocity-field characteristics associated with ZnO. This dependence could potentially be exploited for device application purposes.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Morkoç, H. and Őzgűr, Ű., Zinc oxide: Fundamentals, materials and device technology (Wiley, Weinheim, 2009).Google Scholar
Vanheusden, K., Warren, W. L., Seager, C. H., Tallant, D. R., Voigt, J. A., and Gnade, B. E., J. Appl. Phys. 79, 79837990 (1996).Google Scholar
Ferry, D. K., Phys. Rev. B 12, 23612369 (1975).Google Scholar
Albrecht, J. D., Ruden, P. P., Limpijumnong, S., Lambrecht, W. R. L., and Brennan, K. F., J. Appl. Phys. 86, 68646867 (1999).CrossRefGoogle Scholar
O’Leary, S. K., Foutz, B. E., Shur, M. S., and Eastman, L. F., Solid State Commun. 150, 21822185 (2010).Google Scholar
Siddiqua, P., Shur, M. S., and O’Leary, S. K., MRS Adv. 1(40), 27772782 (2016).Google Scholar
Hadi, W. A., O’Leary, S. K., Shur, M. S., and Eastman, L. F., Solid State Commun. 151, 874878 (2011).CrossRefGoogle Scholar
Fischetti, M. V. and Laux, S. E., J. Appl. Phys. 80, 22342252 (1996).Google Scholar
Arulkumaran, S., Ng, G. I., Kumar, C. M. M., Ranjan, K., Teo, K. L., Shoron, O. F., Rajan, S., Dolmanan, S. B., and Tripathy, S., Appl. Phys. Lett. 106, 053502–1-5 (2015).CrossRefGoogle Scholar
Kane, E. O., Phys, J.. Chem. Solids 1, 249261 (1957).Google Scholar
Qin, G., Zhang, G., Yang, J., Yu, G., Fu, H., and Ji, F., J. Wuhan Univ. Technol., Mater. Sci.. Ed. 28, 4851 (2013).CrossRefGoogle Scholar
Siddiqua, P., Hadi, W. A., Shur, M. S., and O’Leary, S. K., J. Mater. Sci.: Mater. Electron. 26, 44754512 (2015).Google Scholar