Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-05T00:59:37.103Z Has data issue: false hasContentIssue false

Electrospun Fibers for Controlled Release of Nanoparticle-Assisted Phage Therapy Treatment of Topical Wounds

Published online by Cambridge University Press:  11 June 2018

Jessica M. Andriolo*
Affiliation:
Mechanical Engineering, Montana Tech, 1300 West Park Street, Butte, MT 59701 Montana Tech Nanotechnology Laboratory, Montana Tech, 1300 West Park Street, Butte, MT 59701
Nathan J. Sutton
Affiliation:
Mechanical Engineering, Montana Tech, 1300 West Park Street, Butte, MT 59701 Montana Tech Nanotechnology Laboratory, Montana Tech, 1300 West Park Street, Butte, MT 59701
John P. Murphy
Affiliation:
Montana Tech Nanotechnology Laboratory, Montana Tech, 1300 West Park Street, Butte, MT 59701
Lane G. Huston
Affiliation:
Mechanical Engineering, Montana Tech, 1300 West Park Street, Butte, MT 59701 Montana Tech Nanotechnology Laboratory, Montana Tech, 1300 West Park Street, Butte, MT 59701
Emily A. Kooistra-Manning
Affiliation:
Montana Tech Nanotechnology Laboratory, Montana Tech, 1300 West Park Street, Butte, MT 59701
Robert F. West
Affiliation:
Montana Tech Nanotechnology Laboratory, Montana Tech, 1300 West Park Street, Butte, MT 59701
Marisa L. Pedulla
Affiliation:
Biological Sciences, Montana Tech, 1300 West Park Street, Butte, MT 59701
M. Katie Hailer
Affiliation:
Montana Tech Nanotechnology Laboratory, Montana Tech, 1300 West Park Street, Butte, MT 59701 Chemistry and Geochemistry, Montana Tech, 1300 West Park Street, Butte, MT 59701
Jack L. Skinner
Affiliation:
Mechanical Engineering, Montana Tech, 1300 West Park Street, Butte, MT 59701 Montana Tech Nanotechnology Laboratory, Montana Tech, 1300 West Park Street, Butte, MT 59701
Get access

Abstract

Bacterial cultures exposed to iron-doped apatite nanoparticles (IDANPs) prior to the introduction of antagonistic viruses experience up to 2.3 times the bacterial destruction observed in control cultures. Maximum antibacterial activity of these bacteria-specific viruses, or phage, occurs after bacterial cultures have been exposed to IDANPs for 1 hr prior to phage introduction, demonstrating that IDANP-assisted phage therapy would not be straight forward, but would instead require controlled time release of IDANPs and phage. These findings motivated the design of an electrospun nanofiber mesh treatment delivery system that allows burst release of IDANPs, followed by slow, consistent release of phage for treatment of topical bacterial infections. IDANPs resemble hydroxyapatite, a biocompatible mineral analogous to the inorganic constituent of mammalian bone, which has been approved by the Food and Drug Administration for many biomedical purposes. The composite nanofiber mesh was designed for IDANP-assisted phage therapy treatment of topical wounds and consists of a superficial, rapid release layer of polyethylene oxide (PEO) fibers doped with IDANPs, followed by inner, coaxial polycaprolactone / polyethylene glycol (PCL/PEG) blended polymer fiber layer for slower phage delivery. Our investigations have established that IDANP-doped PEO fibers are effective vehicles for dissemination of IDANPs for bacterial exposure and resultant increased bacterial death by phage. In this work, slower delivery of the phage behind IDANPs was accomplished using coaxial, electrospun fibers composed of PCL/PEG polymer blend.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antibiotic Resistance Threats in the United States 2013, (U.S. Department of Health and Human Services, Centers for Disease Control and Prevention 2013), pp. 11–12.Google Scholar
d’Herelle, F., B. New York Acad. Med. 7, 329 (1931).Google Scholar
Haq, I. U., Chaudhry, W. N., Akhtar, M. N., Andleeb, S., and Qadri, I., Virol. J. 9, (2012).CrossRefGoogle Scholar
Chhibber, S., Kaur, T., and Kaur, S., PloS One 8, (2013).CrossRefGoogle Scholar
Mendes, J. J., Leandro, C., Corte-Real, S., Barbosa, R., Cavaco-Silva, P., Melo-Cristino, J., Gorski, A., and Garcia, M., Wound Repair Regener. 21, 595 (2013).CrossRefGoogle Scholar
Lungren, M. P., Christensen, D., Kankotia, R., Falk, I., Paxton, B. E., and Kim, C. Y., Bacteriophage 3, (2013).CrossRefGoogle ScholarPubMed
Yilmaz, C., Colak, M., Yilmaz, B. C., Ersoz, G., Kutateladze, M., and Gozlugol, M., J. Bone Jt. 95, 117 (2013).CrossRefGoogle Scholar
Miᶒdzybrodzki, R., Fortuna, W., Weber-Dᶏbrowska, B., and Górski, A., Postepy. Hig. Med. Dosw. 61, 461 (2007).Google Scholar
Parasion, S., Kwiatek, M., Gryko, R., Mizak, L., Malm, A., Pol. J. Microbiol. 63, 137 (2014).Google Scholar
Doss, J., Culbertson, K., Hahn, D., Camacho, J. and Barekzi, N., Viruses 9, (2017).CrossRefGoogle Scholar
Andriolo, J.M., Hensleigh, R.M., McConnell, C.A., Pedulla, M., Hailer, K., Kasinath, R., Wyss, G., Gleason, W., and Skinner, J.L., J. Vac. Sci. Technol. B 32, (2014).CrossRefGoogle Scholar
Andriolo, J. M., Rossi, R. J., McConnell, C. A., Connors, B. I., Trout, K. L., Hailer, M. K., and Skinner, J. L., J. Vac. Sci. Technol. 15, 908 (2016).Google Scholar
Palmer, L. C., Newcomb, C. J., Kaltz, S. R., Spoerke, E. D., and Stupp, S. I., Chem. Rev. 108, 4754 (2008).CrossRefGoogle Scholar
Šupová, M., Ceram. Int. 41, 9203 (2015).CrossRefGoogle Scholar
Prem, V. S. and Chandra, S., J. Biomater Tissue Eng. 2, 269 (2012).Google Scholar
Sahdev, P., Podaralla, S., Kaushik, R. S., and Perumal, O., J. Biomed. Nanotechnol. 9, 132 (2013).CrossRefGoogle Scholar
Lee, D., Upadhye, K., and Kumta, P.N., Mater. Sci. Eng. B 177, 269 (2012).Google Scholar
Keshri, A. K. and Agarwal, A., Nanosci. Nanotechnol. Let. 4, 228 (2012).CrossRefGoogle Scholar
Ezhaveni, S., Yuvakkumar, R., Rajkumar, M., Sundaram, N. M., and Rajendran, V., J. Nanosci. Nanotechnol. 13, 1631 (2013).CrossRefGoogle Scholar
Andriolo, J. M., Wyss, G. F., Murphy, J. P., Pedulla, M. L., Hailer, M. K., and Skinner, J. L., MRS Advances 2, 2465 (2017).CrossRefGoogle Scholar
Korehei, R. and Kadla, J. F., Carbohyd. Polym. 100, 150 (2014).CrossRefGoogle Scholar
Korehei, R. and Kadla, J., J. Appl. Microbiol. 114, 1425 (2013).CrossRefGoogle Scholar
Salalha, W., Kuhn, J., Dror, Y., and Zussman, E., Nanotechnology 17, 4675 (2006).CrossRefGoogle Scholar
Dalton, P.D., Klinkhammer, K., Salber, J., Klee, D., and Möller, M., Biomacromolecules 7, 686 (2006).CrossRefGoogle Scholar
Kim, J.S. and Lee, D.S., Polym. J. 32, 616 (2000).CrossRefGoogle Scholar
Larrondo, L. and Manley, R.S.J., J. Polym. Sci. Pol. Phys. 19, 515 (1981).Google Scholar
Lee, S. and Obendorf, S.K., J. Appl. Polym. Sci. 102, 3430 (2006).CrossRefGoogle Scholar
Lyons, J. and Li, C., Ko, F., Polymer 45, 7597 (2004).CrossRefGoogle Scholar
Fister, S., Robben, C., Witte, A. K., Schoder, D., Wagner, M., and Rossmanith, P., Front. Microbiol. 7, 1152 (2016).CrossRefGoogle Scholar