Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-01T01:32:39.205Z Has data issue: false hasContentIssue false

Epitaxial GdN/SmN-based superlattices grown by molecular beam epitaxy

Published online by Cambridge University Press:  07 February 2017

Franck Natali
Affiliation:
The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
Joe Trodahl*
Affiliation:
The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
Stéphane Vézian
Affiliation:
Université Côte d’Azur, Centre de Recherche sur l’Hétéro Épitaxie et ses Applications (CRHEA), Centre National de la recherche Scientifique (CNRS), France
Antoine Traverson
Affiliation:
The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
Benjamin Damilano
Affiliation:
Université Côte d’Azur, Centre de Recherche sur l’Hétéro Épitaxie et ses Applications (CRHEA), Centre National de la recherche Scientifique (CNRS), France
Ben Ruck
Affiliation:
The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
Get access

Abstract

GdN/SmN based superlattices have been grown by molecular beam epitaxy. In-situ reflection high energy electron diffraction was used to evaluate the evolution of the epitaxial growth and the structural properties were assessed by ex-situ X-ray diffraction. Hall Effect and resistivity measurements as a function of the temperature establish that the superlattices are heavily n-type doped semiconductors and the electrical conduction resides in both REN layers, SmN and GdN.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Natali, F., Ruck, B. J., Plank, N. O., Trodahl, H. J., Granville, S., Meyer, C. and Lambrecht, W. R., Prog. Mater. Sci. 58, 1316 (2013).Google Scholar
Wachter, P., Adv, Mater. Phys. Chem. 6, 28 (2016).Google Scholar
Azeem, M., Chin. Phys. Lett. 33, 027501 (2016).Google Scholar
Anton, E.-M., Ruck, B., Meyer, C., Natali, F., Warring, H., Wilhelm, F., Rogalev, A., Antonov, V. and Trodahl, H., Phys. Rev. B, 87, 134414 (2013).Google Scholar
Le Binh, D., Ruck, B. J., Natali, F., Warring, H., Trodahl, H. J., Anton, E.-M., Meyer, C., Ranno, L., Wilhelm, F., and Rogalev, A., Phys. Rev. Lett. 111, 167206 (2013).Google Scholar
Anton, E.-M., McNulty, J. F., Ruck, B. J., Suzuki, M., Mizumaki, M., Antonov, V. N., Quilty, J. W., Strickland, N., and Trodahl, H. J., Phys. Rev. B 93, 064431 (2016).Google Scholar
McNulty, J. F., Anton, E-M., Ruck, B. J., Natali, F., Warring, H., Wilhelm, F., Rogalev, A., Medeiros Soares, M., Brookes, N. B., and Trodahl, H. J., Phys. Rev. B, 91, 174426 (2015)Google Scholar
Natali, F., Plank, N., Galipaud, J., Ruck, B., Trodahl, H., Semond, F., Sorieul, S. and Hirsch, L., J. Cryst. Growth, 312, 3583 (2010).Google Scholar
Scarpulla, M. A., Gallinat, C., Mack, S., Speck, J. and Gossard, A., J. Cryst. Growth, 311, 1239 (2009).Google Scholar
Yoshitomi, H., Kitayama, S., Kita, T., Wada, O., Fujisawa, M., Ohta, H., and Sakurai, T., Phys. Rev. B 83, 155202(23011).Google Scholar
Natali, F., Vézian, S., Granville, S., Damilano, B., Trodahl, H. J., Anton, E.-M., Warring, H., Semond, F., Cordier, Y., Chong, S. V. and Ruck, B.J., J. Cryst. Growth, 404, 146 (2014).CrossRefGoogle Scholar
Chan, J. R., Vézian, S., Trodahl, J., Khalfioui, M. A., Damilano, B. and Natali, F., Cryst. Growth Des. 16, 6454 (2016).Google Scholar
Hammond, C.: the Basics of Crystallography and Diffraction (international Union of Cyrstallography, Oxford 1997), p. 157.Google Scholar
Lee, C.-M., Warring, H., Vézian, S., Damilano, B., Granville, S., Al Khalfioui, M., Cordier, Y., Trodahl, H. J., Ruck, B. J. and Natali, F., Appl. Phys. Lett, 106, 022401 (2015).CrossRefGoogle Scholar
Chan, J. R., Al Khalfioui, M., Vézian, S., Trodahl, H.J., Damilano, B., and Natali, F., submitted to MRS Advances.Google Scholar
Anton, E.-M., Granville, S., Engel, A., Chong, S., Governale, M., Zülicke, U., Moghaddam, A., Trodahl, H., Natali, F., Vézian, S. and Ruck, B., Phys. Rev. B, 94, 024106 (2016).Google Scholar