Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-01T01:53:17.296Z Has data issue: false hasContentIssue false

Improving Hard Magnetic and Magnetocaloric Properties of Nanocrystalline Intermetallics

Published online by Cambridge University Press:  11 April 2016

L. Bessais*
Affiliation:
CMTR, ICMPE, UMR7182, CNRS – UPEC, 2-8 rue Henri Dunant F-94320 Thiais, France
R. Guetari
Affiliation:
CMTR, ICMPE, UMR7182, CNRS – UPEC, 2-8 rue Henri Dunant F-94320 Thiais, France
K. Zehani
Affiliation:
CMTR, ICMPE, UMR7182, CNRS – UPEC, 2-8 rue Henri Dunant F-94320 Thiais, France
J. Moscovici
Affiliation:
CMTR, ICMPE, UMR7182, CNRS – UPEC, 2-8 rue Henri Dunant F-94320 Thiais, France
N. Mliki
Affiliation:
LMOP, Faculty of Science of Tunis, University of Tunis El Manar, Tunisia
Get access

Abstract

Structural and magnetic properties of nanocrystalline P6/mmm R(Fe,M)9C are presented. Their structure is explained with a model based on the R1–s(Fe,M)5+2s formula (s = vacancy rate) where s R atoms are statistically substituted by s transition metal pairs. The maximum coercivity is obtained for low Ga/Si content for auto-coherent diffraction domain size 30 nm. This controlled microstructure might lead to hard permanent magnet materials. Furthermore, the influence of small amount of Dy substitution on magnetocaloric properties of R-Fe systme is reported. The potential for using these low-cost iron based nanostructured RFe9 powders in magnetic refrigeration at room temperature is also discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Shield, J. and Meacham, B. E., J. Appl. Phys. 87, 2055 (2000).Google Scholar
Bessais, L. and Djéga-Mariadassou, C., Phys. Rev. B, 63, 054412 (2001).Google Scholar
Djéga-Mariadassou, C. and Bessais, L., J. Magn. Magn. Mater. 81, 210 (2000).Google Scholar
Gschneidner, K. A., Pecharsky, V. K., and Tsokol, A. O., Rep. Prog. Phys. 68, 1479 (2005).CrossRefGoogle Scholar
Tishin, A. and Spichkin, Y., The magnetocaloric effect and its applications (Bristol, 2003). (2003).Google Scholar
Phejar, M., Paul-Boncour, V., and Bessais, L., Intermetallics 18, 2301 (2010).Google Scholar
Givord, D., Laforest, J., Schweizer, J., and Tasset, F., J. Appl. Phys. 50, 2008 (1979).CrossRefGoogle Scholar
Buschow, K. H. J., Rep. Prog. Phys. 54, 1123 (1991).Google Scholar
Djega-Mariadassou, C., Bessais, L., Nandra, A., and Burzo, E., Phys. Rev. B 68, 24406 (2003).Google Scholar
Bessais, L. et al. ., Phys. Rev. B 69, 64402 (2004).CrossRefGoogle Scholar
Mandal, K. et al. ., J. Phys. D 37, 2628 (2004).Google Scholar
Bessais, L., Dorolti, E., and Djega-Mariadassou, C., J. Appl. Phys. 87, 192503 (2005).Google Scholar
Khazzan, S., Mliki, N., Bessais, L., and Djega-Mariadassou, C., J. Magn. Magn. Mater. 322, 224 (2010).Google Scholar
Yelon, W. B., Hu, Z., James, W. J., and Marasinghe, G. K., J. Appl. Phys. 79, 5939 (1996).CrossRefGoogle Scholar