Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T01:48:53.452Z Has data issue: false hasContentIssue false

Inhibition of BMP9 Induced Bone Formation by Salicylic-acid Polymer Capping

Published online by Cambridge University Press:  27 January 2020

Timothy M. Acri
Affiliation:
University of Iowa, College of Pharmacy, 115 S. Grand Avenue Iowa City, Iowa
Noah Z. Laird
Affiliation:
University of Iowa, College of Pharmacy, 115 S. Grand Avenue Iowa City, Iowa
Liu Hong
Affiliation:
University of Iowa, College of Dentistry, 801 Newton Road Iowa City, Iowa
Jaidev L. Chakka
Affiliation:
University of Iowa, College of Pharmacy, 115 S. Grand Avenue Iowa City, Iowa
Kyungsup Shin
Affiliation:
University of Iowa, College of Dentistry, 801 Newton Road Iowa City, Iowa
Satheesh Elangovan
Affiliation:
University of Iowa, College of Dentistry, 801 Newton Road Iowa City, Iowa
Aliasger K. Salem*
Affiliation:
University of Iowa, College of Pharmacy, 115 S. Grand Avenue Iowa City, Iowa University of Iowa, College of Dentistry, 801 Newton Road Iowa City, Iowa
Get access

Abstract

This work focuses on the development of a system to control the formation of bone to complement developments that have enabled potent regeneration of bony tissue. Scaffolds were fabricated with chemically modified RNA encoding for bone morphogenetic protein-9 (cmBMP9) and capped with salicylic acid (SA)-containing polymer (SAPAE). The goal was to determine if SAPAE could inhibit the formation of bone in a pilot animal study since cmBMP9 has been demonstrated to be highly effective in regenerating bone in a rat calvarial defect model. The results indicated that cmBMP9 increased bone formation (30% increase in area covered compared to control) and that SAPAE trended toward reducing the bone formation. These results suggest SAPAE could be useful as a chemical agent in reducing unwanted bone formation in implants loaded with cmBMP9.

Type
Articles
Copyright
Copyright © Materials Research Society 2020 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sheikh, Z., Qureshi, J., Alshahrani, A. M., Nassar, H., Ikeda, Y., Glogauer, M. and Ganss, B., Odontology 105 (1), 1-12 (2017).10.1007/s10266-016-0267-0CrossRefGoogle Scholar
Bessa, P. C., Casal, M. and Reis, R. L., Journal of tissue engineering and regenerative medicine 2 (2-3), 81-96 (2008).CrossRefGoogle Scholar
James, A. W., LaChaud, G., Shen, J., Asatrian, G., Nguyen, V., Zhang, X., Ting, K. and Soo, C., Tissue Eng Part B Rev 22 (4), 284-297 (2016).CrossRefGoogle Scholar
Papanagiotou, M., Dailiana, Z. H., Karachalios, T., Varitimidis, S., Hantes, M., Dimakopoulos, G., Vlychou, M. and Malizos, K. N., World J Orthop 8 (1), 36-41 (2017).10.5312/wjo.v8.i1.36CrossRefGoogle Scholar
Grenier, G., Leblanc, É., Faucheux, N., Lauzier, D., Kloen, P. and Hamdy, R. C., Skeletal Muscle 3 (1), 29 (2013).10.1186/2044-5040-3-29CrossRefGoogle Scholar
Erdmann, L. and Uhrich, K. E., Biomaterials 21 (19), 1941-1946 (2000).10.1016/S0142-9612(00)00073-9CrossRefGoogle Scholar
Prudencio, A., Schmeltzer, R. C. and Uhrich, K. E., Macromolecules 38 (16), 6895-6901 (2005).CrossRefGoogle Scholar
Schmeltzer, R. C. and Uhrich, K. E., J Bioact Compat Polym 21 (2), 123-133 (2006).CrossRefGoogle Scholar
Subramanian, S., Mitchell, A., Yu, W., Snyder, S., Uhrich, K. and O’Connor, J. P., Tissue Eng Part A 21 (13-14), 2013-2024 (2015).CrossRefGoogle Scholar
Cottrell, J. and O’Connor, J. P., Pharmaceuticals (Basel) 3 (5), 1668-1693 (2010).CrossRefGoogle Scholar
Simon, A. M., Manigrasso, M. B. and O’Connor, J. P., Journal of Bone and Mineral Research 17 (6), 963-976 (2002).CrossRefGoogle Scholar
Mitchell, A., Kim, B., Cottrell, J., Snyder, S., Witek, L., Ricci, J., Uhrich, K. E. and Patrick O’Connor, J., Journal of Biomedical Materials Research Part A 102 (3), 655-664 (2014).CrossRefGoogle Scholar
Atluri, K., Seabold, D., Hong, L., Elangovan, S. and Salem, A. K., Mol. Pharmaceutics 12 (8), 3032-3042 (2015).CrossRefGoogle Scholar
Khorsand, B., Elangovan, S., Hong, L., Dewerth, A., Kormann, M. S. D. and Salem, A. K., AAPS J 19 (2), 438-446 (2017).CrossRefGoogle Scholar
Tamada, J. and Langer, R., Journal of biomaterials science. Polymer edition 3 (4), 315-353 (1992).CrossRefGoogle Scholar
Wang, J. H., Liu, Y. Z., Yin, L. J., Chen, L., Huang, J., Liu, Y., Zhang, R. X., Zhou, L. Y., Yang, Q. J., Luo, J. Y., Zuo, G. W., Deng, Z. L. and He, B. C., Bone 57 (1), 311-321 (2013).10.1016/j.bone.2013.08.015CrossRefGoogle ScholarPubMed
Harten, R. D., Svach, D. J., Schmeltzer, R. and Uhrich, K. E., J. Biomed. Mater. Res. 72 (4), 354-362 (2005).10.1002/jbm.a.30184CrossRefGoogle Scholar
Zhang, X., Schwarz, E. M., Young, D. A., Puzas, J. E., Rosier, R. N. and O’Keefe, R. J., The Journal of Clinical Investigation 109 (11), 1405-1415 (2002).10.1172/JCI0215681CrossRefGoogle Scholar
Chikazu, D., Li, X., Kawaguchi, H., Sakuma, Y., Voznesensky, O. S., Adams, D. J., Xu, M., Hoshi, K., Katavic, V., Herschman, H. R., Raisz, L. G. and Pilbeam, C. C., Journal of Bone and Mineral Research 17 (8), 1430-1440 (2002).CrossRefGoogle Scholar
Wang, J.-H., Liu, Y.-Z., Yin, L.-J., Chen, L., Huang, J., Liu, Y., Zhang, R.-X., Zhou, L.-Y., Yang, Q.-J., Luo, J.-Y., Zuo, G.-W., Deng, Z.-L. and He, B.-C., Bone 57 (1), 311-321 (2013).CrossRefGoogle ScholarPubMed
Yang, J., Shi, P., Tu, M., Wang, Y., Liu, M., Fan, F. and Du, M., Food Science and Human Wellness 3 (3), 127-135 (2014).10.1016/j.fshw.2014.12.002CrossRefGoogle Scholar
Schmeltzer, R. C., Anastasiou, T. J. and Uhrich, K. E., Polym Bull (Berl) 49 (6), 441-448 (2013).CrossRefGoogle Scholar