Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-01T00:21:19.588Z Has data issue: false hasContentIssue false

Microscopic Electrical Conductivity of Nanodiamonds after Thermal and Plasma Treatments

Published online by Cambridge University Press:  09 February 2016

Jan Čermák*
Affiliation:
Institute of Physics ASCR, Cukrovarnická 10, 16200 Prague 6, Czech Republic.
Halyna Kozak
Affiliation:
Institute of Physics ASCR, Cukrovarnická 10, 16200 Prague 6, Czech Republic.
Štěpán Stehlík
Affiliation:
Institute of Physics ASCR, Cukrovarnická 10, 16200 Prague 6, Czech Republic.
Vladimír Švrček
Affiliation:
Research Center for Photovoltaics, AIST, Tsukuba, 305-8568, Japan
Vincent Pichot
Affiliation:
Nanomatériaux pour les Systèmes Sous Sollicitations Extremes (NS3E), UMR 3208 ISL/CNRS/Unistra, Institut franco-allemand de recherches de Saint-Louis (ISL), 5, rue du Général Cassagnou, 68300 Saint-Louis, France
Denis Spitzer
Affiliation:
Nanomatériaux pour les Systèmes Sous Sollicitations Extremes (NS3E), UMR 3208 ISL/CNRS/Unistra, Institut franco-allemand de recherches de Saint-Louis (ISL), 5, rue du Général Cassagnou, 68300 Saint-Louis, France
Alexander Kromka
Affiliation:
Institute of Physics ASCR, Cukrovarnická 10, 16200 Prague 6, Czech Republic.
Bohuslav Rezek
Affiliation:
Institute of Physics ASCR, Cukrovarnická 10, 16200 Prague 6, Czech Republic. Faculty of Electrical Engineering, Czech Technical University, Technická 10, 16627 Prague 6, Czech Republic.
*
*(Email: cermakj@fzu.cz)
Get access

Abstract

Atomic force microscopy (AFM) is used to measure local electrical conductivity of HPHT nanodiamonds (NDs) dispersed on Au substrate in the as-received state and after thermal or plasma treatments. Oxygen-treated NDs are highly electrically resistive, whereas on hydrogen-treated NDs electric current around -200 pA at -2 V is detected. The as-received NDs as well as NDs after an underwater radio-frequency (RF) plasma or laser irradiation (LI) treatments contain both electrically conductive (two types: highly and weakly conductive) and highly resistive particles. The higher conductivity is attributed to H-terminated (RF) or graphitized (LI) NDs. The lower conductivity is attributed to NDs with hydrogenated amorphous carbon shell.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Mochalin, V. N., Shenderova, O., Ho, D., and Gogotsi, Y., Nat. Nanotechnol. 7, 11 (2012).Google Scholar
Tisler, J., Balasubramanian, G., Naydenov, B., Kolesov, R., Grotz, B., Reuter, R., Boudou, J.-P., Curmi, P. A., Sennour, M., Thorel, A., Börsch, M., Aulenbacher, K., Erdmann, R., Hemmer, P. R., Jelezko, F., and Wrachtrup, J., ACS Nano 3, 1959 (2009).Google Scholar
Ho, D. and Ho, C.-M., Int. J. Smart Nano Mater. 1, 69 (2010).Google Scholar
Nagata, A., Oku, T., Suzuki, A., Kikuchi, K., and Kikuchi, S., J. Ceram. Soc. Jpn. 118, 1006 (2010).CrossRefGoogle Scholar
Kozak, H., Remes, Z., Houdkova, J., Stehlik, S., Kromka, A., and Rezek, B., J. Nanoparticle Res. 15, (2013).CrossRefGoogle Scholar
Stehlik, S., Glatzel, T., Pichot, V., Pawlak, R., Meyer, E., Spitzer, D., and Rezek, B., Diam. Relat. Mater. (2015).Google Scholar
Petit, T., Arnault, J.-C., Girard, H. A., Sennour, M., and Bergonzo, P., Phys. Rev. B 84, 233407 (2011).CrossRefGoogle Scholar
Kromka, A., Čech, J., Kozak, H., Artemenko, A., Ižák, T., Čermák, J., Rezek, B., and Černák, M., Phys. Status Solidi B 252, 2602 (2015).Google Scholar
Kondo, T., Neitzel, I., Mochalin, V. N., Urai, J., Yuasa, M., and Gogotsi, Y., J. Appl. Phys. 113, 214307 (2013).Google Scholar
Stehlik, S., Petit, T., Girard, H. A., Arnault, J.-C., Kromka, A., and Rezek, B., Langmuir 29, 1634 (2013).Google Scholar
Stehlik, S., Varga, M., Ledinsky, M., Jirasek, V., Artemenko, A., Kozak, H., Ondic, L., Skakalova, V., Argentero, G., Pennycook, T., Meyer, J. C., Fejfar, A., Kromka, A., and Rezek, B., J. Phys. Chem. C (2015).Google Scholar
Mariotti, D., Patel, J., Švrček, V., and Maguire, P., Plasma Process. Polym. 9, 1074 (2012).Google Scholar
Mariotti, D., Mitra, S., and Švrček, V., Nanoscale 5, 1385 (2013).Google Scholar
Galář, P., Čermák, J., Malý, P., Kromka, A., and Rezek, B., J. Appl. Phys. 116, 223103 (2014).CrossRefGoogle Scholar
Ledinský, M., Fejfar, A., Vetushka, A., Stuchlík, J., Rezek, B., and Kočka, J., Phys. Status Solidi RRL – Rapid Res. Lett. 5, 373 (2011).Google Scholar
Maier, F., Riedel, M., Mantel, B., Ristein, J., and Ley, L., Phys. Rev. Lett. 85, 3472 (2000).CrossRefGoogle Scholar
Nebel, C. E., Kato, H., Rezek, B., Shin, D., Takeuchi, D., Watanabe, H., and Yamamoto, T., Diam. Relat. Mater. 15, 264 (2006).Google Scholar
Kozak, H., Artemenko, A., Čermák, J., Švrček, V., Kromka, A., and Rezek, B., Vib. Spectrosc. doi: 10.1016/j.vibspec.2016.01.010 (2016).Google Scholar
Robertson, J., Mater. Sci. Eng. R Rep. 37, 129 (2002).Google Scholar
Gaudin, J., Medvedev, N., Chalupský, J., Burian, T., Dastjani-Farahani, S., Hájková, V., Harmand, M., Jeschke, H. O., Juha, L., Jurek, M., Klinger, D., Krzywinski, J., Loch, R. A., Moeller, S., Nagasono, M., Ozkan, C., Saksl, K., Sinn, H., Sobierajski, R., Sovák, P., Toleikis, S., Tiedtke, K., Toufarová, M., Tschentscher, T., Vorlíček, V., Vyšín, L., Wabnitz, H., and Ziaja, B., Phys. Rev. B 88, (2013).Google Scholar