Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-01T07:22:33.176Z Has data issue: false hasContentIssue false

Modeling dynamics of Polyacrylamide Gel in Oil-Water Mixtures: Dissipative Particle Dynamics Approach

Published online by Cambridge University Press:  14 January 2018

Chandan K Choudhury
Affiliation:
Materials Science and Engineering, Clemson University, Clemson, 29634, USA.
Olga Kuksenok*
Affiliation:
Materials Science and Engineering, Clemson University, Clemson, 29634, USA.
Get access

Abstract

Using dissipative particle dynamics approach, we model phase separation in a ternary system encompassing cross-linked polyacrylamide (PAM) gel, oil and water. PAM gels are widely used in many applications, from food and cosmetic applications to enhanced oil recovery approaches. We show that the PAM nanogel adsorbs at the oil-water interface and spreads out over this interface for the case of a loosely cross-linked polymer network. Tailoring PAM behavior at the oil-water interfaces by controlling gel’s properties could allow one to alter the properties of oil-water emulsions.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Muggeridge, A.; Cockin, A.; Webb, K.; Frampton, H.; Collins, I.; Moulds, T.; Salino, P., Philos T R Soc A 2014, 372 (2006).Google Scholar
Yegin, C.; Singh, B. P.; Zhang, M.; Biopharm, F.; Balaji, K.; Suhag, A.; Ranjith, R.; Peksaglam, Z.; Wijaya, Z.; Putra, D.; Anggraini, H.; Temizel, C., In SPE Oil and Gas India Conference and Exhibition, SPE-185352-MS, 4–6 April, Society of Petroleum Engineers: Mumbai, India, 2017.Google Scholar
Shetty, C. S.; Nikolov, A. D.; Wasan, D. T.; Bhattacharyya, B. R., J. Dispersion Sci. Technol. 1992, 13 (2), 121133.CrossRefGoogle Scholar
Zhao, Y.; Zhou, J.; Xu, X.; Liu, W.; Zhang, J.; Fan, M.; Wang, J., Colloid. Polym. Sci. 2009, 287 (2), 237241.CrossRefGoogle Scholar
LiYan, Q.; Xiuhong, Z.; Fengling, Z., SPE-57317-MS, Society of Petroleum Engineers: 1999.Google Scholar
Chen, Z.; Schuman, T. P.; Geng, J.; Bai, B., J. Appl. Polym. Sci. 2017, 134 (13), 44581.Google Scholar
Groot, R. D.; Warren, P. B., J. Chem. Phys. 1997, 107 (11), 44234435.Google Scholar
Yong, X.; Kuksenok, O.; Matyjaszewski, K.; Balazs, A. C., Nano Lett. 2013, 13 (12), 62696274.Google Scholar
Nair, N.; Park, M.; Handgraaf, J.-W.; Cassiola, F. M., J. Phys. Chem. B 2016, 120 (35), 95239539.Google Scholar
Nossal, R., Macromolecules 1985, 18 (1), 4954.Google Scholar
Jha, P. K.; Zwanikken, J. W.; Detcheverry, F. A.; de Pablo, J. J.; Olvera de la Cruz, M., Soft Matter 2011, 7 (13), 59655975.Google Scholar
Comic, L.; Nagy, B., Acta Crystallographica Section A 2016, 72 (5), 570581.Google Scholar
Groot, R. D., J. Chem. Theory Comput. 2006, 2 (3), 568574.Google Scholar
Plimpton, S., J. Comput. Phys. 1995, 117 (1), 119.Google Scholar
Sirk, T. W.; Slizoberg, Y. R.; Brennan, J. K.; Lisal, M.; Andzelm, J. W., J. Chem. Phys. 2012, 136 (13), 134903.Google Scholar
Duan, M.; Song, X.; Zhao, S.; Fang, S.; Wang, F.; Zhong, C.; Luo, Z., J. Phys. Chem. C 2017, 121 (8), 43324342.CrossRefGoogle Scholar
Groot, R. D.; Rabone, K. L., Biophys. J. 2001, 81 (2), 725736.Google Scholar
Rubinstein, M. C., Ralph, H., Polymer Physics. OUP Oxford: 2003.Google Scholar