Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-14T06:09:59.151Z Has data issue: false hasContentIssue false

On the Use of Moringa Oleifera Leaves Extract for the Biosynthesis of NiO and ZnO Nanoparticles

Published online by Cambridge University Press:  15 April 2020

I. Ngom*
Affiliation:
Laboratoire de Photonique Quantique, Energie et Nano-Fabrication, Faculté des Sciences et Techniques Université Cheikh Anta Diop de Dakar (UCAD) B.P. 5005 Dakar-Fann, Dakar, Sénégal UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa Nanosciences Africa Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Western Cape, South Africa
N. M. Ndiaye
Affiliation:
Laboratoire de Photonique Quantique, Energie et Nano-Fabrication, Faculté des Sciences et Techniques Université Cheikh Anta Diop de Dakar (UCAD) B.P. 5005 Dakar-Fann, Dakar, Sénégal
A. Fall
Affiliation:
Laboratoire de Photonique Quantique, Energie et Nano-Fabrication, Faculté des Sciences et Techniques Université Cheikh Anta Diop de Dakar (UCAD) B.P. 5005 Dakar-Fann, Dakar, Sénégal UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa Nanosciences Africa Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Western Cape, South Africa
M. Bakayoko
Affiliation:
Laboratoire de Photonique Quantique, Energie et Nano-Fabrication, Faculté des Sciences et Techniques Université Cheikh Anta Diop de Dakar (UCAD) B.P. 5005 Dakar-Fann, Dakar, Sénégal UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa Nanosciences Africa Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Western Cape, South Africa
B. D. Ngom
Affiliation:
Laboratoire de Photonique Quantique, Energie et Nano-Fabrication, Faculté des Sciences et Techniques Université Cheikh Anta Diop de Dakar (UCAD) B.P. 5005 Dakar-Fann, Dakar, Sénégal UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa
M. Maaza
Affiliation:
UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa Nanosciences Africa Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Western Cape, South Africa
*
*(Email: idngom@yahoo.fr)
Get access

Abstract

This contribution reports on the biosynthesis of nickel oxide and zinc oxide nanoparticles (NiO-NPs & ZnO-NPs) via a natural extract from Moringa Oleifera leaves as an effective chelating and/or oxidizing/reduction agent of nickel nitrate hexahydrate and zinc nitrate hexahydrate. The structural and optical properties of these two types of semiconductors obtained in a similar procedure are investigated using X-rays Diffraction (XRD), Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR), diffuse reflectance UV-Visible-NIR and Photoluminescence (PL) techniques. The structural analysis shows the formation of pure cubic NiO-NPs and pure wurtzite ZnO-NPs with an average crystallite size of 17.80 nm and 10.81 nm respectively. Their band gaps, calculated from the diffuse reflectance analysis were found to be 4.28 eV and 3.35 eV respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Karunakaran, R.G., Lu, C.H., Zhang, Z., Yang, S., Highly transparent superhydrophobic surfaces from the coassembly of nanoparticles (≤ 100 nm), Langmuir. 27 (2011) 45944602. doi:10.1021/la104067c.CrossRefGoogle Scholar
Winkler, E., Zysler, R.D., Mansilla, M.V., Fiorani, D., Surface anisotropy effects in NiO nanoparticles, 2005. doi:10.1103/PhysRevB.72.132409.CrossRefGoogle Scholar
Musevi, S.J., Aslani, A., Motahari, H., Salimi, H., Offer a novel method for size appraise of NiO nanoparticles by PL analysis: Synthesis by sonochemical method, J. Saudi Chem. Soc. 20 (2016) 245252. doi:10.1016/j.jscs.2012.06.009.CrossRefGoogle Scholar
Matinise, N., Kaviyarasu, K., Mongwaketsi, N., Khamlich, S., Kotsedi, L., Mayedwa, N., Maaza, M., Green synthesis of novel zinc iron oxide (ZnFe2O4 ) nanocomposite via Moringa Oleifera natural extract for electrochemical applications, Appl. Surf. Sci. 446 (2018) 6673. doi:10.1016/j.apsusc.2018.02.187.CrossRefGoogle Scholar
Helan, V., Prince, J.J., Al-Dhabi, N.A., Arasu, M.V., Ayeshamariam, A., Madhumitha, G., Roopan, S.M., Jayachandran, M., Neem leaves mediated preparation of NiO nanoparticles and its magnetization, coercivity and antibacterial analysis, Results Phys. 6 (2016) 712718. doi:10.1016/j.rinp.2016.10.005.CrossRefGoogle Scholar
Khamlich, S., Abdullaeva, Z., Kennedy, J. V., Maaza, M., High performance symmetric supercapacitor based on zinc hydroxychloride nanosheets and 3D graphene-nickel foam composite, Appl. Surf. Sci. 405 (2017) 329336. doi:10.1016/j.apsusc.2017.02.095.CrossRefGoogle Scholar
Anandha Babu, G., Ravi, G., Mahalingam, T., Kumaresavanji, M., Hayakawa, Y., Influence of microwave power on the preparation of NiO nanoflakes for enhanced magnetic and supercapacitor applications, Dalt. Trans. 44 (2015) 44854497. doi:10.1039/c4dt03483j.CrossRefGoogle ScholarPubMed
Nwankwo, U., Bucher, R., Ekwealor, A.B.C., Khamlich, S., Maaza, M., Ezema, F.I., Synthesis and characterizations of rutile-TiO2 nanoparticles derived from chitin for potential photocatalytic applications, Vacuum. 161 (2019) 4954. doi:10.1016/j.vacuum.2018.12.011.CrossRefGoogle Scholar
Iravani, S., Green synthesis of metal nanoparticles using plants, Green Chem. 13 (2011) 26382650. doi:10.1039/c1gc15386b.CrossRefGoogle Scholar
Vasanthi, H.R., ShriShriMal, N., Das, D.K., Phytochemicals from Plants to Combat Cardiovascular Disease, Curr. Med. Chem. 19 (2012) 22422251. doi:10.2174/092986712800229078.CrossRefGoogle ScholarPubMed
Nascimento, G.G.F., Locatelli, J., Freitas, P.C., Silva, G.L., Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria, Brazilian J. Microbiol. 31 (2000) 247256. doi:10.1590/S1517-83822000000400003.CrossRefGoogle Scholar
Manguro, L.O.A., Lemmen, P., Phenolics of Moringa oleifera leaves, Nat. Prod. Res. Former. Nat. Prod. Lett. 21 (2007) 5668. doi:10.1080/14786410601035811.Google ScholarPubMed
Thema, F.T., Manikandan, E., Gurib-fakim, A., Maaza, M., Single phase Bunsenite NiO nanoparticles green synthesis by Agathosma betulina natural extract, J. Alloys Compd. 657 (2016) 655661. doi:10.1016/j.jallcom.2015.09.227.CrossRefGoogle Scholar
Saheb, M., Hosseini, A.H., Hashemzadeh, A., Elahi, B., Hasanzadeh, L., Oskuee, R.K., Majid, D., Photocatalytic and Biological Attributes of Green Synthesized Nickel Oxide Nanoparticles by Rheum Turkestanicum (RT) Root Extract, ChemistrySelect. 4 (2019) 24162420. doi:10.1002/slct.201803903.CrossRefGoogle Scholar
Ezhilarasi, A.A., Vijaya, J.J., Kaviyarasu, K., Maaza, M., Ayeshamariam, A., Kennedy, L.J., Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: Cytotoxicity effect of nanoparticles against HT-29 cancer cells, J. Photochem. Photobiol. B Biol. 164 (2016) 352360. doi:10.1016/j.jphotobiol.2016.10.003.CrossRefGoogle ScholarPubMed
Juibari, N.M., Eslami, A., Synthesis of nickel oxide nanorods by Aloe vera leaf extract, J. Therm. Anal. Calorim. 136 (2018) 913923. doi:10.1007/s10973-018-7640-x.CrossRefGoogle Scholar
Bashir, A.K.H., Razanamahandry, L.C., Nwanya, A.C., Kaviyarasu, K., Saban, W., Mohamed, H.E.A., Ntwampe, S.K.O., Ezema, F.I., Maaza, M., Biosynthesis of NiO nanoparticles for photodegradation of free cyanide solutions under ultraviolet light, J. Phys. Chem. Solids. 134 (2019) 133140. doi:10.1016/j.jpcs.2019.05.048.CrossRefGoogle Scholar
Nwanya, A.C., Ndipingwi, M.M., Ikpo, C.O., Obodo, R.M., Nwanya, S.C., Botha, S., Ezema, F.I., Iwuoha, E.I., Maaza, M., Zea mays lea silk extract mediated synthesis of nickel oxide nanoparticles as positive electrode material for asymmetric supercabattery, J. Alloys Compd. 822 (2020) 153581. doi:10.1016/j.jallcom.2019.153581.CrossRefGoogle Scholar
Matinise, N., Fuku, X.G., Kaviyarasu, K., Mayedwa, N., Maaza, M., ZnO nanoparticles via Moringa oleifera green synthesis: Physical properties & mechanism of formation, Appl. Surf. Sci. 406 (2017) 339347. doi:10.1016/j.apsusc.2017.01.219.CrossRefGoogle Scholar
Thema, F.T., Manikandan, E., Dhlamini, M.S., Maaza, M., Green synthesis of ZnO nanoparticles via Agathosma betulina natural extract, Mater. Lett. 161 (2015) 124127. doi:10.1016/j.matlet.2015.08.052.CrossRefGoogle Scholar
Dobrucka, R., Długaszewska, J., Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium Pratense flower extract, Saudi J. Biol. Sci. 23 (2015) 517523. doi:10.1016/j.sjbs.2015.05.016.CrossRefGoogle ScholarPubMed
Karthik, S., Siva, P., Shanmugam, K., Suriyaprabha, R., Acalypha indica – mediated green synthesis of ZnO nanostructures under differential thermal treatment: Effect on textile coating, hydrophobicity, UV resistance, and antibacterial activity, Adv. Powder Technol. 28 (2017) 31843194. doi:10.1016/j.apt.2017.09.033.CrossRefGoogle Scholar
Diallo, A., Ngom, B.D., Park, E., Maaza, M., Green synthesis of ZnO nanoparticles by Aspalathus linearis: Structural & optical properties, J. Alloys Compd. 646 (2015) 425430. doi:10.1016/j.jallcom.2015.05.242.CrossRefGoogle Scholar
Khalil, A.T., Ovais, M., Ullah, I., Ali, M., Shinwari, Z.K., Khamlich, S., Maaza, M., Sageretia thea (Osbeck.) mediated synthesis of zinc oxide nanoparticles and its biological applications, Nanomedicine. 12 (2017) 17671789. doi:10.2217/nnm-2017-0124.CrossRefGoogle ScholarPubMed
Happy, A., Soumya, M., Kumar, S.V., Rajeshkumar, S., Sheba, R.D., Lakshmi, T., Nallaswamy, V.D., Phyto-assisted synthesis of zinc oxide nanoparticles using Cassia alata and its antibacterial activity against Escherichia coli, Biochem. Biophys. Reports. 17 (2019) 208211. doi:10.1016/j.bbrep.2019.01.002.CrossRefGoogle ScholarPubMed
Elumalai, K., Velmurugan, S., Ravi, S., Kathiravan, V., Ashokkumar, S., Green synthesis of zinc oxide nanoparticles using Moringa oleifera leaf extract and evaluation of its antimicrobial activity, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 143 (2015) 158164. doi:10.1016/j.saa.2015.02.011.CrossRefGoogle ScholarPubMed
Hameed, S., Khalil, A.T., Ali, M., Numan, M., Khamlich, S., Shinwari, Z.K., Maaza, M., Greener synthesis of ZnO and Ag-ZnO nanoparticles using Silybum marianum for diverse biomedical applications, Nanomedicine. 14 (2019) 655673. doi:10.2217/nnm-2018-0279.CrossRefGoogle ScholarPubMed
Kane, A.O., Ngom, B.D., Sakho, O., Zongo, S., Ndiaye, N.M., Ndlangamandla, C.L., Manyala, N., Maaza, M., Biosynthesis of ZnO Nanoparticles by Adansonia Digitata Leaves Dye Extract: Structural and Physical Properties, MRS Adv. 3 (2018) 24872497. doi:10.1557/adv.2018.272.CrossRefGoogle Scholar
Yulizar, Y., Bakri, R., Oky, D., Apriandanu, B., Hidayat, T., Nano-Structures & Nano-Objects ZnO/CuO nanocomposite prepared in one-pot green synthesis using seed bark extract of Theobroma cacao, Nano-Structures & Nano-Objects. 16 (2018) 300305. doi:10.1016/j.nanoso.2018.09.003.CrossRefGoogle Scholar
Fuku, X., Kaviyarasu, K., Matinise, N., Maaza, M., Punicalagin Green Functionalized Cu/Cu2O/ZnO/CuO Nanocomposite for Potential Electrochemical Transducer and Catalyst, Nanoscale Res. Lett. 11 (2016) 914. doi:10.1186/s11671-016-1581-8.CrossRefGoogle ScholarPubMed
Diallo, A., Beye, A.C., Doyle, T.B., Park, E., Maaza, M., Beye, A.C., Doyle, T.B., Park, E., Maaza, M., Green synthesis of Co3O4 nanoparticles via Aspalathus linearis: Physical properties, Green Chem. Lett. Rev. 8 (2015) 3036. doi:10.1080/17518253.2015.1082646.CrossRefGoogle Scholar
Dobrucka, R., Synthesis of titanium dioxide nanoparticles using Echinacea purpurea herba, Iran. J. Pharm. Res. 16 (2017) 756762. doi:10.22037/ijpr.2017.2026.Google Scholar
Khalil, A.T., Ovais, M., Ullah, I., Ali, M., Shinwari, Z.K., Maaza, M., Biosynthesis of iron oxide (Fe2O3) nanoparticles via aqueous extracts of Sageretia thea (Osbeck.) and their pharmacognostic properties, Green Chem. Lett. Rev. 10 (2017) 186201. doi:10.1080/17518253.2017.1339831.CrossRefGoogle Scholar
Gopalu, K., Jagathambal, M., Kolesnikov, E., Dmitry, A., Ishteev, A., Gusev, A., Kuznetsov, D., Floral Biosynthesis of Mn3O4 and Fe2O3 Nanoparticles Using Chaenomeles sp. Flower Extracts for Efficient Medicinal Applications, Miner. Met. Mater. Soc. 69 (2017) 13251333. doi:10.1007/s11837-017-2349-z.Google Scholar
Miller, E.L., Rocheleau, R.E., Electrochemical and Electrochromic Behavior of Reactively Sputtered Nickel Oxide, J. Electrochem. Soc. 144 (1997) 19952003. doi:10.1149/1.1837734.CrossRefGoogle Scholar
Aytan, E., Debnath, B., Kargar, F., Barlas, Y., Lacerda, M.M., Li, J.X., Lake, R.K., Shi, J., Balandin, A.A., Spin-phonon coupling in antiferromagnetic nickel oxide, Appl. Phys. Lett. 111 (2017) 16. doi:10.1063/1.5009598.CrossRefGoogle Scholar
Schmidt-Mende, L., MacManus-Driscoll, J.L., ZnO – nanostructures, defects, and devices, Mater. Today. 10 (2007) 4048. doi:10.1016/S1369-7021(07)70078-0.CrossRefGoogle Scholar
Ngom, B.D., Mpahane, T., Manikandan, E., Maaza, M., ZnO nano-discs by lyophilization process: Size effects on their intrinsic luminescence, J. Alloys Compd. 656 (2016) 758763. doi:10.1016/j.jallcom.2015.09.230.CrossRefGoogle Scholar
Dooley, K.M., Chen, S.Y., Ross, J.R.H., Stable Nickel-Containing Catalysts for the Oxidative Coupling of Methane, J. Catal. 145 (1994) 402408. doi:10.1006/jcat.1994.1050.CrossRefGoogle Scholar
Kaviyarasu, K., Manikandan, E., Kennedy, J., Jayachandran, M., Ladchumananandasiivam, R., De Gomes, U.U., Maaza, M., Synthesis and characterization studies of NiO nanorods for enhancing solar cell efficiency using photon upconversion materials, Ceram. Int. 42 (2016) 83858394. doi:10.1016/j.ceramint.2016.02.054.CrossRefGoogle Scholar
Lin, J., Huang, W., Sun, Z., Ray, C.S., Day, D.E., Structure and non-linear optical performance of TeO2-Nb2O5-ZnO glasses, J. Non. Cryst. Solids. 336 (2004) 189194. doi:10.1016/j.jnoncrysol.2004.02.007.CrossRefGoogle Scholar
Zhu, Y., Elim, H.I., Foo, Y.L., Yu, T., Liu, Y., Ji, W., Lee, J.Y., Shen, Z., Wee, A.T.S., Thong, J.T.L., Sow, C.H., Multiwalled carbon nanotubes beaded with ZnO nanoparticles for ultrafast nonlinear optical switching, Adv. Mater. 18 (2006) 587592. doi:10.1002/adma.200501918.CrossRefGoogle Scholar
Mayedwa, N., Mongwaketsi, N., Khamlich, S., Kaviyarasu, K., Matinise, N., Maaza, M., Green synthesis of nickel oxide, palladium and palladium oxide synthesized via Aspalathus linearis natural extracts: physical properties & mechanism of formation, Appl. Surf. Sci. 446 (2017) 266272. doi:10.1016/j.apsusc.2017.12.116.CrossRefGoogle Scholar
Nasseri, M.A., Ahrari, F., Zakerinasab, B., A green biosynthesis of NiO nanoparticles using aqueous extract of Tamarix serotina and their characterization and application, Appl. Organometal. Chem. (2016) 17. doi:10.1002/aoc.3530.Google Scholar
Abdul Rahman, I., Ayob, M.T.M., Radiman, S., Enhanced photocatalytic performance of NiO-decorated ZnO nanowhiskers for methylene blue degradation, J. Nanotechnol. 2014 (2014) 19. doi:10.1155/2014/212694.CrossRefGoogle Scholar
Selim, A.Q., Mohamed, E.A., Seliem, M.K., Zayed, A.M., Synthesis of sole cancrinite phase from raw muscovite: Characterization and optimization, J. Alloys Compd. 762 (2018) 653667. doi:10.1016/j.jallcom.2018.05.195.CrossRefGoogle Scholar
Dhanalakshmi, A., Natarajan, B., Ramadas, V., Palanimurugan, A., Thanikaikarasan, S., Structural, morphological, optical and antibacterial activity of rod-shaped zinc oxide and manganese-doped zinc oxide nanoparticles, Pramana - J. Phys. 87 (2016) 0–9. doi:10.1007/s12043-016-1248-0.CrossRefGoogle Scholar
Sheena, P.A., Priyanka, K.P., Sabu, N.A., Sabu, B., Varghese, T., Effect of Calcination Temperature on the Structural and Optical Properties of Nickel Oxide Nanoparticles, Nanosyst. Physics, Chem. Math. 5 (2014) 441449.Google Scholar
Srikant, V., Clarke, D.R., On the optical band gap of zinc oxide, J. Appl. Phys. 83 (1998) 54475451. doi:10.1063/1.367375.CrossRefGoogle Scholar
Sangeetha, G., Rajeshwari, S., Venckatesh, R., Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: Structure and optical properties, Mater. Res. Bull. 46 (2011) 25602566. doi:10.1016/j.materresbull.2011.07.046.CrossRefGoogle Scholar
Cai, X., Cui, X., Zu, L., Zhang, Y., Gao, X., Lian, H., Liu, Y., Wang, X., Ultra high electrical performance of nano nickel oxide and polyaniline composite materials, Polymers (Basel). 9 (2017) 114. doi:10.3390/polym9070288.CrossRefGoogle ScholarPubMed
Nuru, Z.Y., Arendse, C.J., Nemutudi, R., Nemraoui, O., Maaza, M., Pt-Al2O3 nanocoatings for high temperature concentrated solar thermal power applications, Phys. B Condens. Matter. 407 (2012) 16341637. doi:10.1016/j.physb.2011.09.104.CrossRefGoogle Scholar
Sithole, J., Ngom, B.D., Khamlich, S., Manikanadan, E., Manyala, N., Saboungi, M.L., Knoessen, D., Nemutudi, R., Maaza, M., Simonkolleite nano-platelets: Synthesis and temperature effect on hydrogen gas sensing properties, Appl. Surf. Sci. 258 (2012) 78397843. doi:10.1016/j.apsusc.2012.04.073.CrossRefGoogle Scholar
Judith Vijaya, J., Jayaprakash, N., Kombaiah, K., Kaviyarasu, K., John Kennedy, L., Jothi Ramalingam, R., Al-Lohedan, H.A., , M.A. V.M., Maaza, M., Bioreduction potentials of dried root of Zingiber officinale for a simple green synthesis of silver nanoparticles: Antibacterial studies, J. Photochem. Photobiol. B Biol. 177 (2017) 6268. doi:10.1016/j.jphotobiol.2017.10.007.CrossRefGoogle ScholarPubMed