Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-04T05:49:00.997Z Has data issue: false hasContentIssue false

Organometallic Halide Perovskite Synthesis in Polymer Melt for Improved Stability in High Humidity

Published online by Cambridge University Press:  20 May 2016

John P. Murphy*
Affiliation:
Montana Tech Nanotechnology Lab, Montana Tech, Butte, MT
Jessica M. Andriolo
Affiliation:
Montana Tech Nanotechnology Lab, Montana Tech, Butte, MT
Brandon M. Ross
Affiliation:
Montana Tech Nanotechnology Lab, Montana Tech, Butte, MT Department of General Engineering, Montana Tech, Butte, MT
Gary F. Wyss
Affiliation:
Center for Advanced Mineral and Metallurgical Processing, Montana Tech, Butte, MT
Nicole E. Zander
Affiliation:
U.S. Army Research Laboratory, Aberdeen, MD
Jack L. Skinner
Affiliation:
Montana Tech Nanotechnology Lab, Montana Tech, Butte, MT Department of General Engineering, Montana Tech, Butte, MT
*
Get access

Abstract

A new organometallic halide perovskite (OHP) synthesis method, whereby a polymer melt is used to thermodynamically drive the reaction that forms OHP crystallites, is demonstrated. The synthesis method allows for the facile encapsulation of moisture-sensitive OHP without the loss of simplicity during fabrication, which makes OHP materials so attractive for the photovoltaic industry. Degradation of OHP crystallites embedded in a polystyrene matrix was studied using UV-Vis absorbance over a period of several days. The OHP crystallites degrade as a result of the reversible nature of the reaction that forms the crystallites. After the reversion to precursors (PbI2 and CH3NH3I) the CH3NH3I irreversibly degrades [2] allowing the degradation to be tracked via optical interrogation. Additionally, surface morphology and elemental analysis of fabricated samples was carried out using SEM/EDS techniques.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Best Research-Cell Efficiencies (2016). Available at: http://www.nrel.gov/ncpv/images/efficiency_chart.jpg (accessed 6 March 2016)Google Scholar
Niu, G., Guo, X. and Wang, L., J. Mater. Chem. A. 3, 8970 (2015)Google Scholar
Kojima, A., Teshima, K., Shirai, Y. and Miyasaka, T., J. Am. Chem. Soc. 131, 6050 (2009)Google Scholar
Liang, K., Mitzi, D. and Prikas, M., Chem. Mater. 10, 403 (1998)CrossRefGoogle Scholar
Liu, M., Johnston, M. and Snaith, H., Nature 501, 395 (2013)CrossRefGoogle Scholar
Yun, J.H., Lee, I., Kim, T-S., Ko, M.J., Kim, J.Y., and Son, H.J., J. Mater. Chem. A. 3, 22176 (2015)CrossRefGoogle Scholar
Eperon, G.E., Habisreutinger, S.N., Leijtens, T., Bruinaers, B.J., van Franeker, J.J., deQuilettes, D.W., Pathak, S., Sutton, R.J., Grancini, G., Ginger, D.S., Janssen, R.J., Petrozza, A. and Snaith, H.J., ACS Nano. 9(9), 9380 (2015)Google Scholar
Sheikh, A.D., Bera, A., Haque, M.A., Rakhi, R.B., Del Gobbo, S., Alshareef, H.N. and Wu, T., Sol. Energ. Mat. Sol. C. 137, 6 (2015)Google Scholar
Lee, M., Teuscher, J., Miyasaka, T., Murakami, T. and Snaith, H., Science 338, 643 (2012)CrossRefGoogle Scholar
Dualeh, A., Gao, P., Seok, S., Nazeeruddin, M. and Grӓtzel, M., Chem. Mater. 26, 6160 (2014)Google Scholar
Methylammonium Iodide; SDS No. 806390 [Online]; Sigma-Aldrich, St. Louis, MO, May 3, 2016, http://www.sigmaaldrich.com/catalog/product/aldrich/806390?lang=en&region=US Google Scholar
Philippe, B., Park, B-W., Lindblad, R., Oscarsson, J., Ahmadi, S., Johansson, E.M.J. and Rensmo, H., Chem. Mater. 27, 1720 (2015).Google Scholar
Saidaminov, M.I., Abdelhady, A.L., Murali, B., Alarousu, E., Burlakov, V.M., Peng, W., Dursun, I., Wang, L., He, Y., Maculan, G., Goriely, A., Wu, T., Mohammed, O.F. and Bakr, O.M., Nature Communications 6, (2015)Google Scholar
Maculan, G., Sheikh, A.D., Abdelhandy, A.L., Saidaminov, M.L., Haque, M.A., Murali, B., Alarousu, E., Mohammed, O.F., Wu, T. and Bakr, O.M., J.Phys. Chem. Lett. 6, 3781 (2015)CrossRefGoogle Scholar
Kumar, V.B., Gouda, L., Porat, Z. and Gedanken, A., Ultrason. Sonochem. 32, 54 (2016)Google Scholar
Yang, J., Siempelkamp, B., Liu, D. and Kelly, T., ACS Nano 9, 1955 (2015)Google Scholar
Ahlawat, D., Mod Phys Lett B 26, 1250098 (2012)Google Scholar