Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T10:49:11.131Z Has data issue: false hasContentIssue false

Ultrathin molecule-based magnetic conductors: A step towards flexible electronics

Published online by Cambridge University Press:  16 December 2019

Naureen Akhtar
Affiliation:
Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747AG Groningen, The Netherlands
Michiel C. Donker
Affiliation:
KBM Master Alloys, Kloosterlaan 2, 9936 TE FARMSUM, The Netherlands
Tenzin Kunsel
Affiliation:
Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747AG Groningen, The Netherlands
Paul H. M. van Loosdrecht
Affiliation:
Physics Institute II, University of Cologne, Köln 50937, Germany.
Thomas T.M. Palstra
Affiliation:
Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747AG Groningen, The Netherlands
Petra Rudolf*
Affiliation:
Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747AG Groningen, The Netherlands
*
*(Email: p.rudolf@rug.nl)
Get access

Abstract

Organic-inorganic hybrid materials have shown a remarkable and rapid development during the past decade because they can be tailored to obtain new device concepts with controlled physical properties. Here, we report on the electronic and magnetic properties of multilayer organic-inorganic hybrid films. Electrical transport properties arising from the π electrons in the organic layer are characteristic of a metallic state at high temperature and evolve into a state described by two-dimensional variable range hopping when temperature decreases below 150 K. The intrinsic electronic behavior of the hybrid films was further studied via the optical properties in the IR range. The optical response confirms the metallic character of the hybrid films. In the second part, the magnetic properties are discussed. A long-range ferromagnetic order with an ordering temperature of ∼ 1 K is revealed in the Gd-based hybrid film. The Cu-based hybrid film, however, shows more extended ferromagnetic exchange interactions than the Gd-based hybrid LB film.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Oh, J., Yuan, H.-C., and Branz, H.M., Nat. Nano. 2012, 7, 743.CrossRefGoogle Scholar
Forrest, S.R., Nature 2004, 428, 911.CrossRefGoogle Scholar
Najafov, H., Lee, B., Zhou, Q., Feldman, L.C., and Podzorov, V., Nat. Mater. 2010, 9, 938.CrossRefGoogle Scholar
Gershenson, M.E., Podzorov, V., and Morpurgo, A.F., Rev. Mod. Phys. 2006, 78, 973.CrossRefGoogle Scholar
Sundar, V.C., Zaumseil, J., Podzorov, V., Menard, E., Willett, R.L., Someya, T., Gershenson, M.E., and Rogers, J.A., Science 2004, 303, 1644.CrossRefGoogle Scholar
Mitzi, D.B., Chondroudis, K., and Kagan, C.R., IBM J. Res. Dev. 2001, 45, 29CrossRefGoogle Scholar
Yuan, Y., Li, T., Wang, Q., Xing, J., Gruverman, A., and Huang, J., Sci. Adv. 2017, 3, e1602164.CrossRefGoogle Scholar
Yu, J., Wang, M., and Lin, S., ACS nano 2016, 10, 11044.CrossRefGoogle Scholar
Palacio, F. and Miller, J.S., Nature 2000, 408, 421.CrossRefGoogle Scholar
Coronado, E., Galán-Mascarós, J.R., Gómez-García, C.J., and Laukhin, V., Nature 2000, 408, 447.CrossRefGoogle Scholar
Coronado, E. and Day, P., Chem. Rev. (Washington, DC, U. S.) 2004, 104, 5419.CrossRefGoogle Scholar
Coronado, E. and Galan-Mascaros, J.R., J. Mater. Chem. 2005, 15, 66.CrossRefGoogle Scholar
Coronado, E., Galán-Mascarós, J.R., Gómez-García, C.J., Martínez-Ferrero, E., and van Smaalen, S., Inorg. Chem. 2004, 43, 4808.CrossRefGoogle Scholar
Talham, D.R., Chem. Rev. (Washington, DC, U. S.) 2004, 104, 5479.CrossRefGoogle Scholar
Yamochi, H., Horiuchi, S., Saito, G., Kusunoki, M., Sakaguchi, K., Kikuchi, T., and Sato, S., Synth. Met. 1993, 56, 2096.CrossRefGoogle Scholar
Akhtar, N., Blake, G., Felici, R., Amenitsch, H., Palstra, T.M., and Rudolf, P., Nano Res . 2014, 7, 1832.CrossRefGoogle Scholar
Smits, F., Bell Syst. Tech. J 1958, 37, 711.CrossRefGoogle Scholar
Miura, Y.F., Takenaga, M., Kasai, A., Nakamura, T., Matsumoto, M. and Kawabata, Y., Jpn. J. Appl. Phys. 1991, 30, 3503.CrossRefGoogle Scholar
Świetlik, R. and Kusch, N.D., Phys. Status Solidi (a) 1994, 142, 515.CrossRefGoogle Scholar
Vlasova, R.M., Drichko, N.V., Semkin, V.N., Zhilyaeva, E.I., Bogdanova, O.A., Lyubovskaya, R.N., and Graja, A., Phys. Solid State 2000, 42, 4.CrossRefGoogle Scholar
Akhtar, N., Gengler, R.Y.N., Palstra, T.T.M., and Rudolf, P., J. Phys. Chem. C 2012, 116, 24130.CrossRefGoogle Scholar
Ulbricht, R., Hendry, E., Shan, J., Heinz, T.F., and Bonn, M., Rev. Mod. Phys. 2011, 83, 543.CrossRefGoogle Scholar
Smith, N.V., Phys. Rev. B 2001, 64, 155106.CrossRefGoogle Scholar
Harris, D.C.. Materials for infrared windows and domes: properties and performance. SPIE-International Society for Optical Engineering. Vol. 70. 1999.CrossRefGoogle Scholar
Barszcz, B., ŁAPIŃSKI, A., Graja, A., Flakina, A.M., and Lyubovskaya, R.N., Mater. Sci.-Pol. 2004, 22.Google Scholar
Łapiński, A., Starodub, V., Golub, M., Kravchenko, A., Baumer, V., Faulques, E., and Graja, A., Synth. Met. 2003, 138, 483.CrossRefGoogle Scholar
Rice, M., Phys. Rev. Lett. 1976, 37, 36.CrossRefGoogle Scholar
Rice, M., Solid State Commun . 1979, 31, 93.CrossRefGoogle Scholar
Grieβhaber, E., Moldenhauer, J., Schweitzer, D., Heinen, I., Keller, H.J., and Strunz, W., Synth. Met. 1997, 87, 11.CrossRefGoogle Scholar
Uruichi, M., Yakushi, K., and Yamashita, Y., J. Mater. Chem. 2000, 10, 2716.CrossRefGoogle Scholar
Yartsev, V., Drozdova, O., Semkin, V., Vlasova, R., and Lyubovskaya, R., Phys. Status Solidi (b) 1998, 209, 471.3.0.CO;2-P>CrossRefGoogle Scholar
Sugano, T., Yamada, K., Saito, G., and Kinoshita, M., Solid State Commun . 1985, 55, 137.CrossRefGoogle Scholar
Ohnuki, H., Desbat, B., Giffard, M., Izumi, M., Imakubo, T., Mabon, G., and Delhaes, P., J. Phys. Chem. B 2001, 105, 4921.CrossRefGoogle Scholar
Grieβhaber, E., Moldenhauer, J., Schweitzer, D., Heinen, I., Keller, H., and Strunz, W., Synth. Met. 1997, 87, 11.CrossRefGoogle Scholar
Prokhorova, T., Simonov, S., Khasanov, S., Zorina, L., Buravov, L., Shibaeva, R., Yagubskii, E., Morgunov, R., Foltynowicz, D., and Świetlik, R., Synth. Met. 2008, 158, 749.CrossRefGoogle Scholar
Coronado, E., Giménez‐Saiz, C., Gómez‐García, C.J., and Capelli, S.C., Angew. Chem. 2004, 116, 3084.CrossRefGoogle Scholar
Obertelli, S., Friend, R., Talham, D., Kurmoo, M., and Day, P., J. Phys.: Condens. Matter 1999, 1, 5671.Google Scholar
Kittel, C. and McEuen, P., Introduction to Solid State Physics. Wiley New York, Vol. 7. 1996.Google Scholar
Mermin, N.D. and Wagner, H., Phys. Rev. Lett. 1966, 17, 1133.CrossRefGoogle Scholar
Polyakov, A.O., Arkenbout, A.H., Baas, J., Blake, G.R., Meetsma, A., Caretta, A., van Loosdrecht, P.H.M., and Palstra, T.T.M., Chem. Mater. 2011, 24, 133.CrossRefGoogle Scholar
Matsumoto, T., Kominami, T., Ueda, K., Sugimoto, T., Tada, T., Noguchi, S., Yoshino, H., Murata, K., Shiro, M., Negishi, E.-i., Toyota, N., Endo, S., and Takahashi, K., Inorg. Chem. 2002, 41, 4763.CrossRefGoogle Scholar
Mukhopadhyay, M.K. and Sanyal, M.K., Pramana - J. Phys. 2006, 67, 207.CrossRefGoogle Scholar
Sugimoto, T., Fujiwara, H., Noguchi, S., and Murata, K., Sci. Technol. Adv. Mater. 2009, 10, 024302.CrossRefGoogle Scholar
Yu, Z.G., Phys. Rev. B 2008, 78, 212411.CrossRefGoogle Scholar