Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T14:03:14.437Z Has data issue: false hasContentIssue false

Application of raw and modified Uruguayan clays to phosphate adsorption for water remediation

Published online by Cambridge University Press:  16 October 2018

Pablo González
Affiliation:
Grupo de Instrumentación y Automatización en Química Analítica (GIAQA), Área Química Analítica, DEC, Facultad de Química, Universidad de la República, Montevideo, Uruguay.
Andrea C. De Los Santos
Affiliation:
Laboratorio de Fisicoquímica de Superficies, DETEMA, Facultad de Química, Universidad de la República, Montevideo, Uruguay.
Jorge R. Castiglioni
Affiliation:
Laboratorio de Fisicoquímica de Superficies, DETEMA, Facultad de Química, Universidad de la República, Montevideo, Uruguay.
María A. De León*
Affiliation:
Laboratorio de Fisicoquímica de Superficies, DETEMA, Facultad de Química, Universidad de la República, Montevideo, Uruguay.
*
Get access

Abstract

A raw clay from Uruguay was modified with aluminium to obtain an aluminium pillared clay (Al-PILC). The solids were characterized by scanning electron microscopy, X-ray diffraction and nitrogen adsorption-desorption isotherms. The Al-PILC retained the typical laminar structure of montmorillonite. The specific surface area and the microporous volume of the Al-PILC, 235 m2 g-1 and 0.096 cm3 g-1, respectively, were much higher than those of the clay. The phosphate adsorption capacity of the Al-PILC was higher than those of the clay. The phosphate adsorption kinetic followed the pseudo-first-order model for both, the clay and the Al-PILC, and the phosphate adsorption isotherm for the Al-PILC fit the Freundlich model.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Deng, L. and Shi, Z., J. Alloys Comp. 637, 188 (2015).CrossRefGoogle Scholar
De Zuane, J., Handbook of Drinking Water Quality, 2nd ed. (Wiley, New York, 1997).Google Scholar
Zhang, J.D., Shen, Z.M., Shan, W.P., Mei, Z.J. and Wang, W.H., J. Hazard. Mater. 186, 76 (2011).CrossRefGoogle Scholar
Ding, L., Wu, C., Deng, H. and Zhang, X., J. Colloid Interface Sci. 376, 224 (2012).CrossRefGoogle Scholar
Hamdi, N. and Srasra, E., J. Environ. Sci. 24, 617 (2012).CrossRefGoogle Scholar
Chen, L., Chen, X. L., Zhou, C.H., Yang, H.M.,Ji, S.F., Tong, D.S., Zhong, Z.K., Yu, W.H. and Chu, M.Q., J.Cleaner Prod. 156, 648 (2017).CrossRefGoogle Scholar
Diano, W., Rubino, R. and Sergio, M., Micro. Meso. Mater. 2, 179 (1994).CrossRefGoogle Scholar
De León, M.A., De Los Santos, C., Latrónica, L., Cesio, N.M., Volzone, C., Castiglioni, J., Sergio, M., J. Chem. Eng. J. 241, 336 (2014).CrossRefGoogle Scholar
Clesceri, L.S., Greenberg, A.E., Eaton, A.D., Standard Methods for the Examination of Water and Wastewater, 20th ed. (American Public Health Association, Washington, 1999) p. 246.Google Scholar
Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J. and Siemieniewska, T., Pure Appl. Chem. 57, 603 (1985).CrossRefGoogle Scholar
Xu, J., Li, Y. and Xie, Y., Non-Met. Mines 25, 44 (2006).Google Scholar