Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-04T00:43:06.106Z Has data issue: false hasContentIssue false

Changing width bandgap of TiO2 nanoparticles incorporating GO

Published online by Cambridge University Press:  10 January 2020

Daniela K. Calvo-Ramos
Affiliation:
Facultad de Química, Posgrado en Ciencias de la Energía, Universidad Autónoma de Querétaro, 76010 Qro. México.
Marina Vega-González
Affiliation:
Centro de Geociencias, Universidad Nacional Autónoma de México, Querétaro, 76230 Qro. México.
José Santos-Cruz
Affiliation:
Facultad de Química, Posgrado en Ciencias de la Energía, Universidad Autónoma de Querétaro, 76010 Qro. México.
Francisco Javier De Moure-Flores
Affiliation:
Facultad de Química, Posgrado en Ciencias de la Energía, Universidad Autónoma de Querétaro, 76010 Qro. México.
Sandra A. Mayén-Hernández*
Affiliation:
Facultad de Química, Posgrado en Ciencias de la Energía, Universidad Autónoma de Querétaro, 76010 Qro. México.
*
*E-mail: sandra.mayen@uaq.edu.mx (S.A. Mayén Hernández)
Get access

Abstract

Nanoparticles of titanium dioxide (TiO2), synthesized by the sonochemical technique, were mixed with different amounts of graphene oxide (GO), obtained by the improved method of Hummer, in order to modify their bandwidth. The TiO2/OG compounds were characterized using different techniques: X-ray Diffraction (XRD), transmission electron microscopy (TEM), Raman and UV-Vis-NIR spectroscopy. TiO2 bandgap decreased, with GO incorporation, from 3.2 to 2.72 eV when GO was present at 20 weigh percentage (TiO2/GO-20%). Photodegradation experiments of methylene blue (MB) were performed with the materials to verify their photocatalytic activity. At 40 minutes, the pure TiO2 degraded 48% of MB, whereas the compound TiO2/GO-20% degraded 88%, showing a good incorporation of both compounds and the improvement of TiO2 photocatalitic properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2020 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Nagaraju, G., Ebeling, G., Gonçalves, R. V., Teixeira, S. R., Weibel, D. E., and Dupont, J., “Controlled growth of TiO2 and TiO2-RGO composite nanoparticles in ionic liquids for enhanced photocatalytic H2 generation,” J. Mol. Catal. A Chem., vol. 378, pp. 213220, 2013.CrossRefGoogle Scholar
Xie, C., Yang, S., Li, B., Wang, H., Shi, J. W., Li, G., and Niu, C., “C-doped mesoporous anatase TiO2 comprising 10nm crystallites,” J. Colloid Interface Sci., vol. 476, pp. 18, 2016.CrossRefGoogle ScholarPubMed
Fagan, R., McCormack, D. E., Hinder, S., and Pillai, S. C., “Improved high temperature stability of anatase TiO2 photocatalysts by N, F, P co-doping,” Mater. Des., vol. 96, pp. 4453, 2016.CrossRefGoogle Scholar
Thiruvenkatachari, R., Vigneswaran, S., and Moon, I. S., “A review on UV/TiO2 photocatalytic oxidation process (Journal Review),” Korean J. Chem. Eng., vol. 25, no. 1, pp. 6472, 2008.CrossRefGoogle Scholar
Chen, X., Wei, J., Hou, R., Liang, Y., Xie, Z., Zhu, Y., Zhang, X., and Wang, H., “Growth of g-C3N4 on mesoporous TiO2 spheres with high photocatalytic activity under visible light irradiation,” Appl. Catal. B Environ., vol. 188, pp. 342350, 2016.CrossRefGoogle Scholar
Trapalis, A., Todorova, N., Giannakopoulou, T., Boukos, N., Speliotis, T., Dimotikali, D., and Yu, J., “TiO2/graphene composite photocatalysts for NOx removal: A comparison of surfactant-stabilized graphene and reduced graphene oxide,” Appl. Catal. B Environ., vol. 180, pp. 637647, 2016.CrossRefGoogle Scholar
Yadav, H. M. and Kim, J. S., “Solvothermal synthesis of anatase TiO2-graphene oxide nanocomposites and their photocatalytic performance,” J. Alloys Compd., vol. 688, pp. 123129, 2016.CrossRefGoogle Scholar
Hamandi, M., Berhault, G., Guillard, C., and Kochkar, H., “Reduced graphene oxide/TiO2 nanotube composites for formic acid photodegradation,” Appl. Catal. B Environ., vol. 209, pp. 203213, 2017.CrossRefGoogle Scholar
Min, Y., Zhang, K., Zhao, W., Zheng, F., Chen, Y., and Zhang, Y., “Enhanced chemical interaction between TiO2 and graphene oxide for photocatalytic decolorization of methylene blue,” Chem. Eng. J., vol. 193–194, pp. 203210, 2012.CrossRefGoogle Scholar
Minitha, C. ., Lalitha, M., Jeyachandran, Y., Senthilkumar, L., and Rajendra, K. R. ., “Adsorption behaviour of reduced graphene oxide towards cationic and anionic dyes: Co-action of electrostatic and π–π interactions,” Mater. Chem. Phys., vol. 194, pp. 243252, 2017.Google Scholar
Stobinski, L., Lesiak, B., Malolepszy, A., Mazurkiewicz, M., and Mierzwa, B., “Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods,” J. Electron Spectros. Relat. Phenomena, vol. 195, pp. 145154, 2014.CrossRefGoogle Scholar
Ding, H., Zhang, S., Chen, J. T., Hu, X. P., Du, Z. F., Qiu, Y. X., and Zhao, D. L., “Reduction of graphene oxide at room temperature with vitamin C for RGO–TiO2 photoanodes in dye-sensitized solar cell,” Thin Solid Films, vol. 584, pp. 2936, 2015.CrossRefGoogle Scholar
Wang, P., Zhan, S., Xia, Y., Ma, S., Zhou, Q., and Li, Y., “The fundamental role and mechanism of reduced graphene oxide in rGO/Pt-TiO2 nanocomposite for high-performance photocatalytic water splitting,” Appl. Catal. B Environ., vol. 207, pp. 335346, 2017.CrossRefGoogle Scholar
Gupta, V., Sharma, N., Singh, U., Arif, M., and Singh, A., “Optik Higher oxidation level in graphene oxide,” Opt. - Int. J. Light Electron Opt., vol. 143, pp. 115124, 2017.CrossRefGoogle Scholar
Xiang, C., Li, M., Zhi, M., Manivannan, A., and Wu, N., “Reduced graphene oxide/titanium dioxide composites for supercapacitor electrodes: shape and coupling effects,” J. Mater. Chem., vol. 22, p. 19161, 2012.CrossRefGoogle Scholar
Iqbal, M. W., Singh, A. K., Iqbal, M. Z., and Eom, J., “Raman fingerprint of doping due to metal adsorbates on graphene,” J. Phys. Condens. Matter, vol. 24, p. 335301, 2012.CrossRefGoogle Scholar
Zhu, Y., Wang, Y., Yao, W., Zong, R., and Zhu, Y., “New insights into the relationship between photocatalytic activity and TiO2–GR composites,” RSC Adv., vol. 5, pp. 2920129208, 2015.CrossRefGoogle Scholar
Bao, S., Hua, Z., Wang, X., Zhou, Y., Zhang, C., Tu, W., Zou, Z., and Xiao, M., “Indirect optical transitions in hybrid spheres with alternating layers of titania and graphene oxide nanosheets,” Opt. Express, vol. 20, no. 27, p. 28801, 2012.CrossRefGoogle ScholarPubMed
Tan, L., Ong, W., Chai, S., and Rahman, A., “Photocatalytic reduction of CO2 with H2O over graphene oxide- supported oxygen-rich TiO2 hybrid photocatalyst under visible light irradiation : Process and kinetic studies,” Chem. Eng. J., vol. 308, pp. 248255, 2017.CrossRefGoogle Scholar
Jo, W. K., Kumar, S., Isaacs, M. A., Lee, A. F., and Karthikeyan, S., “Cobalt promoted TiO2/GO for the photocatalytic degradation of oxytetracycline and Congo Red,” Appl. Catal. B Environ., vol. 201, pp. 159168, 2017.Google Scholar