Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T16:30:12.383Z Has data issue: false hasContentIssue false

Designing Block Copolymers for Nanolithography using Mesoscale Modeling: Line-Space Graphoepitaxy

Published online by Cambridge University Press:  02 February 2016

Valeriy V. Ginzburg*
Affiliation:
The Dow Chemical Company, Building 1702, Midland, MI 48674, U.S.A.
Phillip D. Hustad
Affiliation:
Dow Electronic Materials, 455 Forest St., Marlborough, MA 01752, U.S.A.
Dan B. Millward
Affiliation:
Dow Electronic Materials, 455 Forest St., Marlborough, MA 01752, U.S.A.
Peter Trefonas
Affiliation:
Dow Electronic Materials, 455 Forest St., Marlborough, MA 01752, U.S.A.
*
Get access

Abstract

Directed self-assembly (DSA) of block copolymers is a promising alternative nanolithographic technology aimed at producing sub-40 nm patterns. One important opportunity for DSA is the creation of periodic arrays of lines and spaces. The two most common methods for line-space applications are chemoepitaxy (typically using a lamella-forming PS-b-PMMA diblock) and graphoepitaxy (typically using cylinder-forming block copolymers with a Si-containing minority block). Mesoscale modeling, such as Self-Consistent Field Theory (SCFT), has by now become an important tool in formulation screening and predicting polymer morphologies and defect types and probabilities. Here, we use SCFT to study the morphology of cylinder-forming PS-b-PDMS diblocks in rectangular trenches with grafted PS-brushes. The targeted morphology is 2 cylinders per trench (3X multiplication). We compute phase diagrams and determine equilibrium morphologies as a function of brush thickness and guiding weir height. Using those equilibrium morphologies as starting points, we also compute structures and free energies of typical defects, including dislocation and disclination dipoles, broken lines, and bridges. The predicted defect structures and probabilities are in a reasonable qualitative agreement with recent experimental results.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Nealey, P. and Gronheid, R. (eds), Directed Self-assembly of Block Co-polymers for Nano-manufacturing. (Woodhead Publishing, Cambridge, 2015).Google Scholar
Albert, J. N. L. and Epps, T. H., Materials Today 13 (6), 2433 (2010).Google Scholar
Ji, S., Wan, L., Liu, C.-C., and Nealey, P. F., Progress in Polymer Science (2015), doi:10.1016/j.progpolymsci.2015.10.006.Google Scholar
Bates, F. S. and Fredrickson, G. H., Physics today 52 (2), 3238 (1999).Google Scholar
Hamley, I. W., The physics of block copolymers. (Oxford University Press New York, 1998).Google Scholar
Ginzburg, V. V., Weinhold, J. D., and Trefonas, P., Journal of Polymer Science Part B: Polymer Physics 53, 9095 (2015).Google Scholar
Ginzburg, V. V., Weinhold, J. D., Hustad, P. D., Trefonas, P., Kim, B., Laachi, N., and Fredrickson, G. H., "4 - Field-theoretic simulations and self-consistent field theory for studying block copolymer directed self-assembly", in Directed Self-assembly of Block Co-polymers for Nano-manufacturing, edited by Nealey, Paul and Gronheid, R. (Woodhead Publishing, 2015), pp. 6795.Google Scholar
Latypov, A. and Coskun, T. H., "9 - The inverse directed self-assembly problem", in Directed Self-assembly of Block Co-polymers for Nano-manufacturing, edited by Nealey, Paul and Gronheid, R. (Woodhead Publishing, 2015), pp. 235255.Google Scholar
Morita, H., SPIE Advanced Lithography, 90492O-90492O-90498, (2014).Google Scholar
Ye, X., Edwards, B. J., and Khomami, B., Macromolecular rapid communications 35(7), 702707 (2014).CrossRefGoogle Scholar
Nagpal, U., Muller, M., Nealey, P. F., and de Pablo, J. J., Acs Macro Lett 1 (3), 418422 (2012).Google Scholar
Detcheverry, F. A., Nealey, P. F., and de Pablo, J. J., Macromolecules 43 (15), 64956504 (2010).Google Scholar
Detcheverry, F. A., Liu, G. L., Nealey, P. F., and de Pablo, J. J., Macromolecules 43 (7), 34463454 (2010).Google Scholar
Millward, D. B., Lugani, G. S., Khurana, R., Light, S. L., Niroomand, A., Hustad, P. D., Trefonas, P., Chang, S.-w., Lee, C. N., and Quach, D., SPIE Advanced Lithography, 90540M-90514, (2014).Google Scholar
Kim, B., Laachi, N., Delaney, K. T., and Fredrickson, G. H., SPIE Advanced Lithography, 90491D-90491D-90499, (2014).Google Scholar
Kim, B., Laachi, N., Delaney, K. T., Carilli, M., Kramer, E. J., and Fredrickson, G. H., Journal of Applied Polymer Science (2014), DOI: 10.1002/app.40790.Google Scholar
Shi, A.-C. and Li, B., Soft Matter 9 (5), 13981413 (2013).Google Scholar
Iwama, T., Laachi, N., Kim, B., Carilli, M., Delaney, K. T., and Fredrickson, G. H., Macromolecules 48 (4), 12561261 (2015).Google Scholar
Fredrickson, G., The equilibrium theory of inhomogeneous polymers. (Oxford University Press, 2006).Google Scholar
Fredrickson, G. H., Ganesan, V., and Drolet, F., Macromolecules 35 (1), 1639 (2002).Google Scholar
Millward, D. B., Lugani, G. S., Light, S. L., Niroomand, A., Hustad, P. D., Trefonas, P., Quach, D., and Ginzburg, V. V., SPIE Advanced Lithography, 942304–942312, (2015).Google Scholar
Nose, T., Polymer 36 (11), 22432248 (1995).Google Scholar
Sills, S., Millward, D. B., and Malshe, R., Abstr Pap Am Chem S, (2010).Google Scholar
Izumi, K., Laachi, N., Man, X., Delaney, K. T., and Fredrickson, G. H., SPIE Advanced Lithography, 904922-904922-904927, (2014).Google Scholar
Ginzburg, V. V., Weinhold, J. D., Hustad, P. D., and Trefonas, P. III, J Photopolym Sci Tec 26 (6), 817823 (2013).Google Scholar