Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-29T12:27:28.463Z Has data issue: false hasContentIssue false

The Effect of Alkali Metal (Na, K) Doping on Thermochromic Properties of VO2 Films

Published online by Cambridge University Press:  16 January 2018

Işıl Top*
Affiliation:
School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, E1 4NS, UK.
Johannes Schläfer
Affiliation:
Department of Electronic and Electrical Engineering, University College London, Torrington Place,WC1E 7JE,UK.
Russell Binions
Affiliation:
School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, E1 4NS, UK.
Ioannis Papakonstantinou
Affiliation:
Department of Electronic and Electrical Engineering, University College London, Torrington Place,WC1E 7JE,UK.
Sriluxmi Srimurugananthan
Affiliation:
School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, E1 4NS, UK.
Michael Powell
Affiliation:
Department of Chemistry, University College London, 20 Gordon Street, London. WC1H 0AJ, UK.
Ivan Parkin
Affiliation:
Department of Chemistry, University College London, 20 Gordon Street, London. WC1H 0AJ, UK.
Claire J Carmalt
Affiliation:
Department of Chemistry, University College London, 20 Gordon Street, London. WC1H 0AJ, UK.
Isaac Abrahams*
Affiliation:
School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, E1 4NS,UK.
Get access

Abstract:

This work reports the synthesis of undoped and alkali metal doped thermochromic vanadium dioxide thin films by sol-gel spin coating and subsequent low-temperature annealing at 450 °C in N2-H2 atmosphere. The effect of sodium and potassium on the phase transition temperature as well as on the solar modulations were investigated. A dopant concentration of 0.3 at% resulted in a reduction of the critical transition temperature (Tc) from 62 °C to 57 °C and 47 °C for the sodium and potassium doped films, respectively. Moreover, both dopants improved the solar modulations (ΔTsol) of the undoped VO2 films from 3.81 to 9.44 and 5.43 %, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kiri, P., Hyett, G., and Binions, R., Adv. Mater. Lett. 1, 86105 (2010).Google Scholar
Ye, H. and Long, L., Sol. Energy Mater. Sol. Cells. 120, 669674 (2014).CrossRefGoogle Scholar
Kang, M., Kim, I, Kim, S. W., Ryu, J.W., and Park, H.Y., Appl. Phys. Lett. 98, 131907 (2011).Google Scholar
Omer, A. M., Renew. Sustain. Energy. Rev. 12, 22652300 (2008).Google Scholar
Binions, R., Piccirillo, C., Palgrave, R. G. and Parkin, I. P., Chem. Vap. Depos. 39, 1433 (2008).Google Scholar
Narayan, J. and Bhosle, V. M., J. Appl. Phys. 10, 100 (2006).Google Scholar
Warwick, M. E. A. and Binions, R., J. Mater. Chem. A. 2, 3275 (2014).Google Scholar
Anderson, A. L., Chen, S., Romero, L., Top, I., , R. and Binions, , Buildings. 6. 37 (2016).Google Scholar
Binions, R., Piccirillo, I., and Parkin, I., Surf Coat Technol. 201, 93699372 (2007).CrossRefGoogle Scholar
Zhao, L., Miao, L., Tanemura, S., Zhou, J., Chen, L., Xiao, X., and Xu, G., Thin Solid Films. 543, 157161 (2013).CrossRefGoogle Scholar
Batista, C., Ribeiro, R. M., and Teixeira, V., Nanoscale Res. Lett. 6, 301 (2011).CrossRefGoogle Scholar
Hanlon, T. J., Coath, J. A., and A Richardson, M., Thin Solid Films. 436, 269272 (2003).CrossRefGoogle Scholar
Dai, L., Chen, S., Liu, J., Gao, Y., Zhou, J., Chen, Z., Cao, C., Luo, H., and Kanehira, M., Phys. Chem. Chem. Phys. 15, 1172311729 (2013).Google Scholar
R Mlyuka, N., Niklasson, G A., and Granqvist, C. G., Appl. Phys. Lett. 95, 24 (2009)Google Scholar
Song, L., Zhang, Y., Huang, W., Shi, Q., Li, D., and Zhang, Y., Mater. Res. Bull. 48, 22682271 (2013).Google Scholar
Manning, T., Parkin, I., Blackman, C., and Qureshi, U., J. Mater. Chem. 2, 45604566 (2005)Google Scholar
Cui, Y., Wang, Y., Liu, B., Luo, H., and Gao, Y., RSC Adv. 6, 6439464399, (2016).Google Scholar
Vroon, Z.A.E.P. and Spee, C., J. Non. Cryst. Solids. 218, 189195 (1997).Google Scholar
Dietrich, M. K., Kramm, B. G., Becker, M., Meyer, B. K., Polity, A., and Klar, P. J., J. Appl. Phys. 117, 185301 (2015).Google Scholar
Wu, J., Huang, W., Shi, Q., Jai, C., Zhao, D., Zhang, Y. and Yan, J., Appl. Surf. Sci. 268, 556560, (2013).CrossRefGoogle Scholar
Strelcov, E., Tselev, A., Ivanov, I., Budai, J. D., Zhang, J., Tischler, J. Z., Kravchenko, I., Kalinin, S.V. and Kolmakov, A., Nano Lett. 12, 61986205, (2012).Google Scholar
Hu, L., Tao, H., Chen, G., Pan, R., Wan, M., Xiong, D. and Zhao, X., J. Sol-Gel Sci. Technol. 77, 8593 (2016).Google Scholar
Silversmit, G., Depla, D., Poelman, H., Marin, G. B., and De Gryse, R., J. Electron Spectros. Relat. Phenomena. 135, 167175 (2004).Google Scholar
Sun, Y., Xiao, X., Xu, G., Dong, G., Chai, G., Zhang, H., Liu, P., Zhu, H., and Zhan, Y., Sci Rep. 3, 2756 (2013).Google Scholar
Zhang, Z., Gao, Y., Chen, Z., Du, J., Cao, C., Kang, L., and Luo, H., Langmuir. 26, 1073810744 (2010).Google Scholar
Liang, Z., Zhao, L., Meng, W., Zhong, C., Wei, S., Dong, B., Xu, Z., Wan, L., and Wang, S., J. Alloys Compd., 694, 124131 (2017).CrossRefGoogle Scholar
Zhou, M., Bao, J., Tao, M., Zhu, R., Lin, Y., Zhang, X., and Xie, Y., Chem. Commun.. 49, 6021 (2013).CrossRefGoogle Scholar
Guo, B. Chen, L, Shi, S., Ishaq, A., Wan, D., Chen, Z., Zhang, L., Luo, H., Gao, Y., RSC Adv. 7, 10798, (2017).Google Scholar
Liu, C., Wang, N., and Long, Y., Applied Surface Science. 283, 222226 (2013).Google Scholar
Supplementary material: File

Top et al. supplementary material

Top et al. supplementary material 1

Download Top et al. supplementary material(File)
File 383.1 KB