Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T12:58:53.431Z Has data issue: false hasContentIssue false

The Effect of Thermal Annealing on Cobalt Film Properties and Grain Structure

Published online by Cambridge University Press:  22 May 2020

Natalia V. Doubina
Affiliation:
Lam Research Corporation, Tualatin, OR97062, U.S.A
Tighe A. Spurlin
Affiliation:
Lam Research Corporation, Tualatin, OR97062, U.S.A
Edward C. Opocensky
Affiliation:
Lam Research Corporation, Tualatin, OR97062, U.S.A
Jonathan D. Reid
Affiliation:
Lam Research Corporation, Tualatin, OR97062, U.S.A
Get access

Abstract

The grain structure of electrodeposited Cobalt is important to device electrical and reliability performance. This paper describes thermal annealing studies performed on electroplated blanket and pattern Cobalt wafers. A systematic study of Co film properties and effect of various anneal parameters such as temperature, time, hydrogen pressure and thermal cycling was completed. Co film resistivity, purity, grain structure, phase composition and orientation as well as in-feature grain size have been characterized by various analytical methods such as XRD, STEM, SIMS and EBSD. It was observed that electroplated cobalt films with resistivity approaching bulk Cobalt value can be obtained by annealing in the temperature range of 300°C - 350°C which is favorable for hcp Co phase formation.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Tan, C. and Roy, A., Mater. Sci. Eng. R Rep. 58, 1 (2007).CrossRefGoogle Scholar
Baklanov, M. R., Adelmann, C., Zhao, L., and De Gendt, S., ECS J. Solid State Sci. Technolog. 4, Y1 (2015).CrossRefGoogle Scholar
Josell, D., Brongersma, S.H., and Tokei, Z., Annu. Rev. Mater. Res. 39, 231 (2009).CrossRefGoogle Scholar
Gall, D., J. Appl. Phys., 119, 085101 (2016).CrossRefGoogle Scholar
Varela Pedreira, O., Croes, K., Lesniewska, A., Wu, C., van der Veen, M.H., de Messemaeker, J., Vandersmissen, K., Jourdan, N., Wen, L.G., Adelmann, C., Briggs, B., Vega Gonzales, V., Bommels, J. and Tokei, Z., in 2017 IEEE International Reliability Physics Symposium (IRPS), p. 6B-2.1-6B-2.8. IEEE, Monterey, CA, USA (2017).Google Scholar
Hosseini, M., Koike, J., Sutou, Y., Zhao, L., Lai, S., and Arghavani, R., in 2016 IEEE International Interconnect Technology Conference/Advanced Metallization Conference (IITC/AMC), p 162, IEEE, San Jose, CA, USA (2016).Google Scholar
Kamineni, V., Raymond, M., Siddiqui, S., Mont, F., Tsai, S., Niu, C., Labonte, A., Labelle, C., Fan, S., Peethala, B., Adusumilli, P., Patlolla, R., Priyadarshini, D., Mignot, Y., Carr, A., Pancharatnam, S., Shearer, J., Surisetty, C., Arnold, J., Canaperi, D., Haran, B., Jagannathan, H., Chafik, F., and L'Herron, B., in 2016 IEEE International Interconnect Technology Conference/Advanced Metallization Conference (IITC, AMC), p.105, IEEE, San Jose, CA, USA (2016).Google Scholar
Rigsby, M., Brogan, L., Doubina, N., Liu, Y., Opocensky, E., Spurlin, T., Zhou, J. and Reid, J.. J. Electrochem. Soc. 166, 3167 (2019).CrossRefGoogle Scholar
Kelly, J., Kamineni, V., Lin, X., Pacquette, A., Hopstaken, M., Liang, Y., Amanapu, H., Peethala, B., Jiang, L., Demarest, J., Shobha, H., Raymond, M., and Haran, B.. J. Electrochem. Soc. 166, 3100 (2019).CrossRefGoogle Scholar
Ciofi, I., Contino, A., Roussel, P., Baert, R., Vega-Gonzales, V., Croes, K., Badaroglu, M., Wilson, C., Raghavan, P., Mercha, A., Verkest, D., Groeseneken, G., Mocuta, D. and Thean, A.. IEEE Transactions on Electron Devices 63, 6 (2016).CrossRefGoogle Scholar
Steinhogl, W., Schindler, G., Steinlesberger, G., Traving, M. and Engelhardt, M.. J. Appl. Physics 97, 023706 (2005).CrossRefGoogle Scholar
Besser, P. in 2017 Northern California Chapter of the American Vacuum Society Symposium (NCCAVS), San Jose, CA, USA (2017).Google Scholar
Dille, J., Charlier, J., Winand, R.. J. Mater. Sci. 33, 2771 (1998).CrossRefGoogle Scholar
van Gurp, G.J.. J. Appl. Phys. 46, 1922 (1975).CrossRefGoogle Scholar
Cesar, M., Liu, D., Gall, D., and Guo, H., Phys. Rev. Appl. 2, 044007 (2014).Google Scholar
Cabral, C., Barmak, K., Gupta, J., Clevenger, L.A., Arcot, B., Smith, D.A. and Harper, J.M.E.. J. Vac. Sci. Technol. A. 11, 1435 (1993).CrossRefGoogle Scholar