Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T13:49:02.419Z Has data issue: false hasContentIssue false

Electrospun Carbon Nanofiber Supported Zero Valent Iron Nanoparticles (nZVI@ECNFs) for Cr (VI) Remediation in Ground and Waste Water

Published online by Cambridge University Press:  30 June 2016

Nikhil R. Mucha
Affiliation:
Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC 27401, USA. E-mail: lzhang@ncat.edu; Tel: +1 336 285 2875
Ramesh Ravella
Affiliation:
Department of Natural Resources and Environmental Design, North Carolina A&T State University, Greensboro, NC 27401, USA. E-mail: rravella@ncat.edu; Tel: +1 336 285 4848
Muchha R. Reddy
Affiliation:
Department of Natural Resources and Environmental Design, North Carolina A&T State University, Greensboro, NC 27401, USA. E-mail: rravella@ncat.edu; Tel: +1 336 285 4848
Lifeng Zhang*
Affiliation:
Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC 27401, USA. E-mail: lzhang@ncat.edu; Tel: +1 336 285 2875
*
*(Email: lzhang@ncat.edu)
Get access

Abstract

Zero Valent Iron nanoparticles (nZVI) were synthesized and immobilized on electrospun carbon nanofibers (ECNFs) surface in a controllable manner through redox reaction. The novel nanomaterial, ECNFs-supported nZVI (nZVI@ECNFs), were evaluated for Cr(VI) ions removal from water for the first time. nZVI@ECNFs outperformed stand-alone nZVI as well as state-of-the-art nZVI research for Cr(VI) remediation in water. nZVI@ECNFs with 0.4 g/L nZVI loading could remove 100% Cr(VI) from 50 mg/L Cr(VI) aqueous solution in as little as 5 min at pH = 4. This is enabled by coupling nanofibrous form ECNFs with dispersed distribution of individual and/or cluster nZVI on surface of ECNFs. It is envisioned that nZVI@CNFs is going to serve as a novel supported nZVI nanomaterial for super-fast heavy metal remediation in ground water and waste water treatment with adjustable high capacity as well as straightforward and energy-saving heavy metal recovery.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fu, F., Dionysiou, D. D., and Liu, H., J. Hazard. Mater., 2014, 267, 194205.CrossRefGoogle Scholar
Belay, A. A., J. Environ. Prot., 2010, 1, 5358.CrossRefGoogle Scholar
Singh, R., Misra, V., and Singh, R. P., Environ. Monit. Assess., 2012, 184, 36433651.CrossRefGoogle Scholar
Montesinos, V. N., Quici, N., Halac, E. B., Leyva, A. G., Custo, G., Bengio, S., Zampieri, G., and Litter, M. I., Chem. Eng. J., 2014, 244, 569575.CrossRefGoogle Scholar
Boddu, V. M., Abburi, K., Talbott, J. L., and Smith, E. D., Environ. Sci. Technol., 2003, 37, 44494456.CrossRefGoogle Scholar
Sharma, Y. C., Colloids Surf., A, 2003, 215, 155162.CrossRefGoogle Scholar
Cundy, A. B., Hopkinson, L., and Whitby, R. L. D., Sci. Total Environ., 2008, 400, 4251.CrossRefGoogle Scholar
Li, X.-Q., Elliott, D. W., and Zhang, W.-X., Crit. Rev. Solid State Mater. Sci., 2006, 31, 111122.CrossRefGoogle Scholar
Tosco, T., Papini, M. P., Viggi, C. C., and Sethi, R., J. Cleaner Prod., 2014, 77, 1021.CrossRefGoogle Scholar
Raman, C. D., and Kanmani, S., J. Environ. Manage., 2016, 177, 341355.CrossRefGoogle Scholar
Mukherjee, R., Kumar, R., Sinha, A., Lama, Y., and Saha, A. K., Crit. Rev. Environ. Sci. Technol., 2016, 46, 443466.CrossRefGoogle Scholar
Stefaniuk, M., Oleszczuk, P., and Ok, Y. S., Chem. Eng. J., 2016, 287, 618632.CrossRefGoogle Scholar
Ponder, S. M., Darab, J. C., and Mallouk, T. E., Environ. Sci. Technol., 2000, 34, 25642569.CrossRefGoogle Scholar
Ponder, S. M., Darab, J. G., Bucher, J., Caulder, D., Craig, I., Davis, L., Edelstein, N., Lukens, W., Nitsche, H., Rao, L., Shuh, D. K., and Mallouk, T. E., Chem. Mater., 2001, 13, 479486.CrossRefGoogle Scholar
Kim, H., Hong, H.-J., Jung, J., Kim, S.-H., and Yang, J.-W., J. Hazard. Mater., 2010, 176, 10381043.CrossRefGoogle Scholar
Jabeen, H., Kemp, K. C., and Chandra, V., J. Environ. Manage., 2013, 130, 429435.CrossRefGoogle Scholar
Xiao, S., Shen, M., Guo, R., Wang, S., and Shi, X., J. Phys. Chem. C, 2009, 113, 1806218068.CrossRefGoogle Scholar
Xiao, S., Shen, M., Guo, R., Huang, Q., Wang, S., and Shi, X., J. Mater. Chem., 2010, 20, 57005708.CrossRefGoogle Scholar
Zhang, L., Aboagye, A., Kelkar, A., Lai, C., and Fong, H., J. Mater. Sci., 2014, 49, 463480.CrossRefGoogle Scholar
Zhang, L., Wang, X., Zhao, Y., Zhu, Z., and Fong, H., Mater. Lett., 2012, 68, 133136.CrossRefGoogle Scholar
Aboagye, A., Elbohy, H., Kelkar, A. D., Qiao, Q., Zai, J., Qian, X., and Zhang, L., Nano Energy, 2015, 11, 550556.CrossRefGoogle Scholar
Elbohy, H., Aboagye, A., Sigdel, S., Wang, Q., Sayyad, M. H., Zhang, L., and Qiao, Q., J. Mater. Chem. A, 2015, 3, 1772117727.CrossRefGoogle Scholar
Lv, X., Xu, J., Jiang, G., Tang, J., Xu, X., J. Colloid Interface Sci., 2012, 369, 460469.CrossRefGoogle Scholar
Xu, Y., Zhao, D., Water Res. 2007, 41, 21012108.CrossRefGoogle Scholar
Shi, L., Zhang, X., Chen, Z., Water Res. 2011, 45, 886892.CrossRefGoogle Scholar
Zhang, L., Menkhaus, T. J., Fong, H.. J. Membr. Sci. 2008, 319, 176184.CrossRefGoogle Scholar