Published online by Cambridge University Press: 21 December 2015
Nanoparticle system with the compositionxEu2O3-(1-x)α-Fe2O3 (x= 0.1 and 0.5) was successfully synthesized by mechanochemicalactivation of Eu2O3 andα-Fe2O3 mixtures for 0-12 hours of ball millingtime. The study is of relevance to catalysis, biomedical, sensing andenergy-related applications. 57Fe and 151EuMössbauer spectroscopy were used to investigate the phase evolution,solid solution formation and hyperfine parameters ofxEu2O3-(1-x)α-Fe2O3nanoparticle system under the mechanochemical activation process. The57Fe Mössbauer studies showed that the spectrum of the ballmilled samples evolved from a sextet for hematite to sextets and a doublet uponduration of the milling process with europium oxide. This indicated theformation of the EuFeO3 perovskite for large x values and longmilling times. The 151Eu Mössbauer investigations showedthat the isomer shift decreased with increasing milling time for all molarconcentrations employed.