No CrossRef data available.
Published online by Cambridge University Press: 28 July 2016
The interface between the adhesive toes of geckos and a substrate consists of an array of regularly sized, densely packed, and elastically coupled nanoscopic contacts. The velocity-dependent friction exhibited by this system hints at a convolution of various material and structural effects. We explore the dynamics of frictional sliding in these materials using models based on arrays of coupled masses driven by external forces that can become pinned and unpinned to a potential energy landscape. The model system is driven at normalized velocities spanning 6 orders of magnitude, and the output of this model captures both the low-V and high-V behavior of the actual gecko materials. We explore modifications to the essential model that incorporate features more representative of the structure and behavior of the natural gecko system. These results have implications in the design of materials with custom frictional properties.