Published online by Cambridge University Press: 01 March 2018
Lanthanide nanoparticles had the possibility to couple many imaging techniques into a sole labeling agent has awaken high expectations on personalized medicine or <<Theranostics>>. This is possible due to their intrinsic physic – chemical properties. Combining different imaging techniques physicians may provide a better treatment and perform surgical procedures that might increase the survival rate of patients. Hence, there is an enormous opportunity area for the development of lanthanide multimodal nanoparticles. For this study, we synthesized Gd – Gd2O3 nanoparticles at room temperature by reduction method assisted by Tannic acid, and later we doped them with different ratios of Eu. The nanoparticles were analyzed through high resolution microscopy (HRTEM), Raman Spectroscopy, luminescence, and magnetic characterizations. We found small nanoparticles with a mean size of 5 nm, covered in a carbonaceous layer. In addition, different emissions were detected depending on Eu concentration. Finally, the magnetization vs. temperature recorded under zero field cooled (ZFC) and field cooled (FC) conditions exhibit an antiferromagnetic to ferromagnetic phase transition in samples with Gd2O3, and hysteresis loops recorded at 100 Oe and 2 K showed a relevant magnetization without magnetic remanence. Hence, these nanomaterials have interesting properties to be tested in biocompatibility assays.