Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T13:50:20.028Z Has data issue: false hasContentIssue false

High Performance and Chlorine Resistant Carbon Nanotube/Aromatic Polyamide Reverse Osmosis Nanocomposite Membrane

Published online by Cambridge University Press:  05 April 2016

Rodolfo Cruz-Silva
Affiliation:
Aqua Innovation Center, Shinshu Univ, 4-17-1 Wakasato, 380-0853, Nagano, Japan.
Shigeki Inukai
Affiliation:
Aqua Innovation Center, Shinshu Univ, 4-17-1 Wakasato, 380-0853, Nagano, Japan.
Takumi Araki
Affiliation:
Aqua Innovation Center, Shinshu Univ, 4-17-1 Wakasato, 380-0853, Nagano, Japan. Research Organization for Information Science & Technology, Tokyo, Japan.
Aaron Morelos-Gomez
Affiliation:
Aqua Innovation Center, Shinshu Univ, 4-17-1 Wakasato, 380-0853, Nagano, Japan.
Josue Ortiz-Medina
Affiliation:
Aqua Innovation Center, Shinshu Univ, 4-17-1 Wakasato, 380-0853, Nagano, Japan.
Kenji Takeuchi
Affiliation:
Aqua Innovation Center, Shinshu Univ, 4-17-1 Wakasato, 380-0853, Nagano, Japan. Institute of Carbon Science and Technology, Shinshu University, Nagano, Japan.
Takuya Hayashi
Affiliation:
Aqua Innovation Center, Shinshu Univ, 4-17-1 Wakasato, 380-0853, Nagano, Japan. Institute of Carbon Science and Technology, Shinshu University, Nagano, Japan.
Akihiko Tanioka
Affiliation:
Institute of Carbon Science and Technology, Shinshu University, Nagano, Japan.
Syogo Tejima
Affiliation:
Aqua Innovation Center, Shinshu Univ, 4-17-1 Wakasato, 380-0853, Nagano, Japan. Research Organization for Information Science & Technology, Tokyo, Japan.
Toru Noguchi
Affiliation:
Aqua Innovation Center, Shinshu Univ, 4-17-1 Wakasato, 380-0853, Nagano, Japan. Institute of Carbon Science and Technology, Shinshu University, Nagano, Japan.
Mauricio Terrones
Affiliation:
Institute of Carbon Science and Technology, Shinshu University, Nagano, Japan. Department of Physics, Chemistry and Materials Science and Engineering, and Center for 2-Dimensional and Layered Materials, The Pennsylvania State University; University Park, Pennsylvania 16802, USA; University Park, Pennsylvania 16802, USA.
Morinobu Endo*
Affiliation:
Aqua Innovation Center, Shinshu Univ, 4-17-1 Wakasato, 380-0853, Nagano, Japan. Institute of Carbon Science and Technology, Shinshu University, Nagano, Japan.
Get access

Abstract

Efficient water desalination constitutes a major challenge for the next years and reverse osmosis membranes will play a key role to achieve this target. In this work, a high-performance reverse osmosis nanocomposite membrane was prepared by interfacial polymerization in presence of multiwalled carbon nanotubes. The effect of carbon nanotubes on the chlorine resistance, antifouling and desalination performance of the nanocomposite membranes was studied. We found that the addition of carbon nanotubes not only improved the membrane performance in terms of flow and antifouling, but also inhibited the chlorine degradation of these membranes. Several reports have acknowledged the benefits of adding carbon nanotubes to aromatic PA nanocomposite membranes, but little attention has been paid to the mechanisms related to the improvement of flow rate, selectivity and chlorine tolerance. We carried out a comprehensive study of the chemical and physical effects of carbon nanotubes on the fully crosslinked polyamide network. The chemical structure, chlorine resistance and membrane degradation was studied by several analytical techniques, permeation and fouling studies, whereas the microstructure of the nanocomposite was studied by small and wide angle X-ray scattering, high resolution transmission electron microscopy, and molecular dynamics. We found that the addition of the nanotube affects the interfacial polymerization, resulting in a polymer network with smaller pore size and higher sodium and chlorine rejection. We simulated the hydration of the membrane in seawater and found that the radial distribution function of water confined in the pores of the nanocomposite membrane exhibited smaller clusters of water molecules, thus suggesting a dense membrane structure. We analysed the network mobility and found that the nanotube provides mechanical stability to the polymer matrix. This study presents solid evidence towards more efficient and robust reverse osmosis membranes using carbon nanotubes as mechanical reinforcing and chlorine protection additive.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ding, M. X., Szymczyk, A., Goujon, F., Soldera, A. and Ghoufi, A., Journal of Membrane Science, 2014, 458, 236244.CrossRefGoogle Scholar
Harder, E., Walters, D. E., Bodnar, Y. D., Faibish, R. S. and Roux, B., Journal of Physical Chemistry B, 2009, 113, 1017710182.CrossRefGoogle Scholar
Kiani, F., Khosravi, T., Moradi, F., Rahbari, P., Aghaei, M. J., Arabi, M., Tajik, H. and Kalantarinejad, R., Journal of Computational and Theoretical Nanoscience, 2014, 11, 12371243.Google Scholar
Kolev, V. and Freger, V., Polymer, 2014, 55, 14201426.CrossRefGoogle Scholar
Kotelyanskii, M. J., Wagner, N. J. and Paulaitis, M. E., Journal of Membrane Science, 1998, 139, 116.Google Scholar
Kotelyanskii, M. J., Wagner, N. J. and Paulaitis, M. E., Computational and Theoretical Polymer Science, 1999, 9, 301306.CrossRefGoogle Scholar
Moon, J. H., Katha, A. R., Pandian, S., Kolake, S. M. and Han, S., Journal of Membrane Science, 2014, 461, 8995.Google Scholar
Murad, S. and Powles, J. G., Chemical Physics Letters, 1994, 225, 437440.CrossRefGoogle Scholar
Murad, S., Adsorption-Journal of the International Adsorption Society, 1996, 2, 95101.Google Scholar
Sun, C. Z., Boutilier, M. S. H., Au, H., Poesio, P., Bai, B. F., Karnik, R. and Hadjiconstantinou, N. G., Langmuir, 2014, 30, 675682.CrossRefGoogle Scholar
Xiang, Y., Liu, Y., Mi, B. and Leng, Y., Langmuir, 2014, 30, 90989106.Google Scholar
Di Leo, J. M. and Maranon, J., Journal of Molecular Structure-Theochem, 2004, 709, 163166.CrossRefGoogle Scholar
Gong, X. J., Li, J. Y., Lu, H. J., Wan, R. Z., Li, J. C., Hu, J. and Fang, H. P., Nature Nanotechnology, 2007, 2, 709712.Google Scholar
Holt, J. K., Park, H. G., Wang, Y. M., Stadermann, M., Artyukhin, A. B., Grigoropoulos, C. P., Noy, A. and Bakajin, O., Science, 2006, 312, 10341037.Google Scholar
Ma, M. D., Shen, L. M., Sheridan, J., Liu, J. Z., Chen, C. O. and Zheng, Q. S., Physical Review E, 2011, 83, 7.Google Scholar
Nicolai, A., Sumpter, B. G. and Meuniera, V., Physical Chemistry Chemical Physics, 2014, 16, 86468654.CrossRefGoogle Scholar
Jeong, B. H., Hoek, E. M. V., Yan, Y. S., Subramani, A., Huang, X. F., Hurwitz, G., Ghosh, A. K. and Jawor, A., Journal of Membrane Science, 2007, 294, 17.Google Scholar
Kazemimoghadam, M., Desalination and Water Treatment, 2011, 30, 5157.Google Scholar
Lee, K. P., Arnot, T. C. and Mattia, D., Journal of Membrane Science, 2011, 370, 122.Google Scholar
da Silva, M. K., Tessaro, I. C. and Wada, K., Journal of Membrane Science, 2006, 282, 375382.Google Scholar
Ettori, A., Gaudichet-Maurin, E., Schrotter, J. C., Aimar, P. and Causserand, C., Journal of Membrane Science, 2011, 375, 220230.Google Scholar
Kim, S. G., Hyeon, D. H., Chun, J. H., Chun, B. H. and Kim, S. H., Desalination and Water Treatment, 2013, 51, 63386345.Google Scholar
Kwon, Y. N. and Leckie, J. O., Journal of Membrane Science, 2006, 283, 2126.CrossRefGoogle Scholar
Endo, M., Takeuchi, K., Noguchi, T., Asano, Y., Fujisawa, K., Kim, Y. A., Hayashi, T., Ueki, H. and Iinou, S., Industrial & Engineering Chemistry Research, 2010, 49, 97989802.Google Scholar
Inukai, S., Cruz-Silva, R., Ortiz-Medina, J., Morelos-Gomez, A., Takeuchi, K., Hayashi, T., Tanioka, A., Araki, T., Tejima, S., Noguchi, T., Terrones, M. and Endo, M., Scientific Reports, 2015, 5, 10.Google Scholar
Luo, Y., Harder, E., Faibish, R. S. and Roux, B., Journal of Membrane Science, 2011, 384, 19.Google Scholar
Araki, T., Cruz-Silva, R., Tejima, S., Takeuchi, K., Hayashi, T., Inukai, S., Noguchi, T., Tanioka, A., Kawaguchi, T., Terrones, M., Endo, M., ACS Applied Materials \& Interfaces, 2015, 7, 2456624575.CrossRefGoogle Scholar
Chan, W. F., Chen, H. Y., Surapathi, A., Taylor, M. G., Hao, X. H., Marand, E. and Johnson, J. K., Acs Nano, 2013, 7, 53085319.Google Scholar
Zhao, H. Y., Qiu, S., Wu, L. G., Zhang, L., Chen, H. L. and Gao, C. J., Journal of Membrane Science, 2014, 450, 249256.Google Scholar
Shen, J. N., Yu, C. C., Ruan, H. M., Gao, C. J. and Van der Bruggen, B., Journal of Membrane Science, 2013, 442, 1826.Google Scholar