Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T16:36:38.918Z Has data issue: false hasContentIssue false

Hydrothermal synthesis and characterization of SnS2 nanoparticles with capping pyridine and aniline

Published online by Cambridge University Press:  10 July 2018

Daniela A. Oreggioni*
Affiliation:
Departamento de Desarrollo Tecnológico, CURE, Universidad de la República, Rocha, Uruguay
Ivana Aguiar
Affiliation:
Área de Radioquímica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
Laura Fornaro
Affiliation:
Departamento de Desarrollo Tecnológico, CURE, Universidad de la República, Rocha, Uruguay
María E. Pérez Barthaburu
Affiliation:
Departamento de Desarrollo Tecnológico, CURE, Universidad de la República, Rocha, Uruguay
Get access

Abstract

SnS2 has adequate properties for photovoltaic applications in solar cells. For this purpose, we studied the influence of the capping agents pyridine and aniline in the nanoparticles hydrothermal syntheses. These capping agents are suitable for use in hybrid organic- inorganic solar cells. Different ratios of these agents with respect to the metal precursor were tested. Hexagonal and disc-type nanoparticles were obtained. Lower concentrations of capping agent increased the proportion of hexagons, while diminishing their size. The obtained products are adequate in size, dispersion of size, and stabile in suspension in chloroform to use them in hybrid solar cells. Moreover, the use ofpyridine allowed for more stable suspensions, and therefore better results for this application.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lucena, R., Fresno, F., Conesa, J. C., Applied Catalysis A: General 415–416, 11117 (2012).Google Scholar
Wright, M., Uddin, A., Solar Energy Materials & Solar Cells 107, 87111 (2012).CrossRefGoogle Scholar
Tan, F., Qu, S., Wu, Ju, Liu, K., Zhou, S., Wang, Z., Nanoscale Research Letters, 6:298 (2011).CrossRefGoogle Scholar
Taleblou, M., Borhani, E., Yarmand, B., Klahi, A.. IJMSE, 15 (3) (2018).Google Scholar
Singhal, M., Sharma, J. K., Jeon, H. C., Kang, T. W., Kumar, S., J Mater Sci:Mater Electron (2015).Google Scholar
Yu, W. W., Wang, Y. A., Peng, X., Chem. Mater. 15, 43004308 (2003).CrossRefGoogle Scholar
Lokteva, I., Radychev, N., Witt, F., Brochert, H., Parisi, J., Kolny-Olesiak, J., J.Phys. Chem. C, 114, 1278412791 (2010).CrossRefGoogle Scholar
Bharatul, L. D., Ernade, M. B., Mulla, I. S., Routb, C. S., Late, D. J., RCS Adv., 6, 105421 (2016).Google Scholar
Sun, M.. Mu, K., Wei, Q., J Colloid Interface Sci., 518:298306 (2018).CrossRefGoogle Scholar
Zhai, C., Du, N., Yang, H. Z. D., Chemical Communications 47, 12701272 (2011).CrossRefGoogle Scholar
Lee, K. T., Liang, Y. C., Lin, H. H., Li, C. H., Lu, S. Y., Electrochimica Acta 219, 241250 (2016).CrossRefGoogle Scholar