Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T14:50:37.214Z Has data issue: false hasContentIssue false

In situ Atmospheric Transmission Electron Microscopy of Catalytic Nanomaterials

Published online by Cambridge University Press:  08 May 2018

Sheng Dai*
Affiliation:
Department of Chemical Engineering and Materials Science, University of California - Irvine, Irvine, California 92697, USA.
Wenpei Gao
Affiliation:
Department of Chemical Engineering and Materials Science, University of California - Irvine, Irvine, California 92697, USA.
George W. Graham
Affiliation:
Department of Chemical Engineering and Materials Science, University of California - Irvine, Irvine, California 92697, USA.
Xiaoqing Pan
Affiliation:
Department of Chemical Engineering and Materials Science, University of California - Irvine, Irvine, California 92697, USA. Department of Physics and Astronomy, University of California - Irvine, Irvine, California 92697, USA.
*
*(Email: sdai2@uci.edu)
Get access

Abstract

Significant developments in micro-electrical-mechanical systems (MEMS)-based devices for use in transmission electron microscopy (TEM) sample holders have recently led to the commercialization of windowed gas cells that now enable the atomic-resolution visualization of phenomena occurring during gas-solid interactions at atmospheric pressure. In situ atmospheric TEM study provides unique information that is beneficial to correlating the structure-properties relationship of catalytic nanomaterials, particularly under realistic gaseous reaction conditions. In this paper, we illustrate the capability of this novel in situ device as applied to our study of two catalyst systems: (1) In situ kinetic growth of free standing Pt nanowires as active catalysts toward oxygen reduction reaction (ORR); (2) In situ observation of facet-dependent oxidation of another promising ORR catalyst, Pt3Co nanoparticles.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Crewe, A.V., Wall, J., and Langmore, J.. Science 12, 13381340 (1970).CrossRefGoogle Scholar
Pennycook, J. S. and Boatner, L.A.. Nature 336, 565567 (1988).CrossRefGoogle Scholar
Haider, M., Uhlemann, S., Schwan, E., Kabius, B., and Urban, K.. Nature 392, 768769 (1998).CrossRefGoogle Scholar
Urban, K.W.. Science 25, 506510 (2008).CrossRefGoogle Scholar
Zhu, Y., Moldovan, N., and Espinosa, H.D.. Appl. Phys. Lett. 86, 013506 (2005).CrossRefGoogle Scholar
Creemer, J.F., Helveg, S., Kooyman, P.J., Molenbroek, A.M., Zandbergen, H. W., and Sarro, P.M.. J. Micro Syst. 19, 254264 (2010).CrossRefGoogle Scholar
Haque, M.A., Espinosa, H.D., and Lee, H.J.. MRS Bull. 35, 375381 (2010).CrossRefGoogle Scholar
Poncharal, P., Wang, Z.L., Ugarte, D., and De Heer, W.A.. Science 283, 15131516 (1999).CrossRefGoogle Scholar
Nelson, C.T., Gao, P., Jokisaari, J.R., Heikes, C., Adamo, C., Melville, A., Baek, S. H., Folkman, C.M., Winchester, B., Gu, Y., Liu, Y., Zhang, K., Wang, E., Li, J., Chen, L.Q., Eom, C.B., Schlom, D.G., and Pan, X.. Science 334, 968971 (2011).CrossRefGoogle Scholar
Hansen, P.L., Wagner, J.B., Helveg, S., Rostrup-Nielsen, J.R., Clausen, B.S., and Topsøe, H.. Science 295, 20532055 (2002).CrossRefGoogle Scholar
Yoshida, H., Kuwauchi, Y., Jinschek, J.R., Sun, K., Tanaka, S., Kohyama, M., Shimada, S., Haruta, M., and Takeda, S.. Science 335, 317319 (2012).CrossRefGoogle Scholar
Liao, H.G., Zherebetskyy, D., Xin, H., Czarnik, C., Ercius, P., Elmlund, H., Pan, M., Wang, L.W., and Zheng, H.. Science 345, 916919 (2014).CrossRefGoogle Scholar
Dai, S., Gao, W., Zhang, S., Graham, G.W., and Pan, X.. MRS Commun. 7, 798812 (2017).CrossRefGoogle Scholar
Dai, S., You, Y., Zhang, S., Cai, W., Xu, M., Xie, L., Wu, R., Graham, G.W., and Pan, X.. Nat. Commun. 8, 204 (2017).CrossRefGoogle Scholar
Avanesian, T., Dai, S., Kale, M.J., Graham, G.W., Pan, X., and Christopher, P.. J. Am. Chem. Soc. 139, 45514558 (2017).CrossRefGoogle Scholar
Dai, S., Zhang, S., Katz, M.B., Graham, G.W., and Pan, X.. ACS Catal. 7, 15791582 (2017).CrossRefGoogle Scholar
Shen, X., Dai, S., Zhang, C., Zhang, S., Sharkey, S.M., Graham, G.W., Pan, X., and Peng, Z.. Chem. Mater. 29, 45724579 (2017).CrossRefGoogle Scholar
Cai, W., Zhong, Q., Yu, Y., and Dai, S.. Chem. Eng. J. 288, 238245 (2016).CrossRefGoogle Scholar
Tabata, O. and Tsuchiya, T.. Reliability of MEMS. (Wiley-VCH, Weinheim, 2007).CrossRefGoogle Scholar
Alan, T., Yokosawa, T., Gaspar, J., Pandraud, G., Paul, O., Creemer, F., Sarro, P.M., and Zandbergen, H.W.. Appl. Phys. Lett. 100, 4 (2012).CrossRefGoogle Scholar
Allard, L.F., Bigelow, W.C., Jose-Yacaman, M., Nackashi, D.P., Damiano, J., and Mick, S.E.. Res. Tech. 72, 208215 (2009).CrossRefGoogle Scholar
Allard, L.F., Overbury, S.H., Bigelow, W.C., Katz, M.B., Nackashi, D.P., and Damiano, J.. Microsc. Microanal. 18, 656666 (2012).CrossRefGoogle Scholar
Ma, Y., Gao, W., Shan, H., Chen, W., Shang, W., Tao, P., Song, C., Addiego, C., Deng, T., Pan, X., and Wu, J.. Adv. Mater. 29, 1703460 (2017).CrossRefGoogle Scholar
Dai, S., Hou, Y., Onoue, M., Zhang, S., Gao, W., Yan, X., Graham, G. W., Wu, R., and Pan, X.. Nano Lett. 17, 46834688 (2017).CrossRefGoogle Scholar