Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T19:46:35.223Z Has data issue: false hasContentIssue false

Investigation of Novel Te precursor (i-C3H7)2Te for MoTe2 Fabrication

Published online by Cambridge University Press:  30 January 2018

Y. Hibino*
Affiliation:
Meiji University, Kanagawa214-8571, Japan
S. Ishihara
Affiliation:
Meiji University, Kanagawa214-8571, Japan Research Fellow of the Japan Society for the Promotion of Science, Tokyo102-0083, Japan
N. Sawamoto
Affiliation:
Meiji University, Kanagawa214-8571, Japan
T. Ohashi
Affiliation:
Tokyo Institute of Technology, Kanagawa226-8502, Japan
K. Matsuura
Affiliation:
Tokyo Institute of Technology, Kanagawa226-8502, Japan
H. Machida
Affiliation:
Gas-Phase Growth Ltd., Tokyo184-0012, Japan
M. Ishikawa
Affiliation:
Gas-Phase Growth Ltd., Tokyo184-0012, Japan
H. Sudo
Affiliation:
Gas-Phase Growth Ltd., Tokyo184-0012, Japan
H. Wakabayashi
Affiliation:
Tokyo Institute of Technology, Kanagawa226-8502, Japan
A. Ogura
Affiliation:
Meiji University, Kanagawa214-8571, Japan
*
Get access

Abstract

We report the investigation on the properties of a novel Te precursor (i-C3H7)2Te and its effectiveness in fabricating MoTe2. The vapor pressure of the precursor was obtained by measuring the pressure as a function of its temperature in a sealed chamber. As a result it showed a high vapor pressure of 552.1 Pa at room temperature. The decomposition of the precursor was also investigated using DFT calculation. It was shown that the most likely reaction during the course of the decomposition of (i-C3H7)2Te is (i-C3H7)2Te → H2Te + 2 C3H7. The effectiveness of the precursor on the fabrication of MoTe2 was also investigated. Sputter-deposited MoO3 was tellurized in a quartz-tube furnace at the temperature up to 440°C. The resulting film showed that the 80% of the original MoO3 was tellurized to form MoTe2. It was also shown that further optimization of tellurization is required in order to prevent formation of metal Mo and elemental Te.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sarkar, D., Xie, X., Liu, W., Cao, W., Kang, J., Gong, Y., Kraemer, S., Ajayan, P. M., Banerjee, K., Nature 526, 91 (2015)Google Scholar
Sarkar, D., Xie, X., Liu, W., Cao, W., Kang, J., Gong, Y., Kraemer, S., Ajayan, P. M., Banerjee, K., Nature 526, 91 (2015)CrossRefGoogle Scholar
Ohashi, T., Suda, K., Ishihara, S., Sawamoto, N., Yamaguchi, S., Matsuura, K., Kakushima, K., Sugii, N., Nishiyama, A., Kataoka, Y., Natroi, K., Tsutsui, K., Iwai, H., Ogura, A., and Wakabayashi, H., Jpn. J. Appl. Phys. 54, 04DN08 (2015)Google Scholar
Ling, Z. P., Yang, R., Chai, J. W., Wang, S. J., Leong, W. S., Tong, Y., Lei, D., Zhou, Z., Gong, X., Chi, K., D. Z. and Ang, W., Opt. Express 23, 13582 (2015)Google Scholar
Zheng, Z. Q., Zhang, T. M., Yao, J. D., Zhang, Y., Xu, J. R. and Yang, G. W., Nanotechnol. 27, 225501 (2016)Google Scholar
Sarkar, D., Liu, W., Xie, X., Anselmo, A. C., Mitragotri, S., and Banerjee, K., ACS Nano 8, 3992 (2014)CrossRefGoogle Scholar
Ruppert, C., Aslan, O. B., and Heinz, T. F., Nano Lett. 14, 6231 (2014)CrossRefGoogle Scholar
Keum, D. H., Cho, S., Kim, J. H., Choe, D. H., Sung, H. J., Kan, M., Kang, H., Hwang, J. Y., Kim, S. W., Yang, H., Chang, K. J., Lee, Y. H., Nat. Phys. 11, 482 (2015)Google Scholar
Park, J. C., Yun, S. J., Kim, H., Park, J. H., Chae, S. H., An, S. J., Kim, J. G., Kim, S. M., Kim, K. K., and Lee, Y. H., ACS Nano 9, 6548 (2015)Google Scholar
Duerloo, K. A. N., Li, Y., and Reed, E. J., Nat. Comm. 5, 4214 (2014)Google Scholar
Muratore, C., Hu, J. J., Wang, B., Haque, M. A., Bultman, J. E., Jespersen, M. L., Shamberger, P. J., McConney, M. E., Naguy, R. D., and Voevodin, A. A., Appl. Phys. Lett. 104, 261604 (2014)Google Scholar
Jin, Z., Shin, S., Kwon, D. H., Han, S. J., and Min, Y. S., Nanoscale 6, 14453 (2014)Google Scholar
Ji, Q., Zhang, Y., Gao, T., Zhang, Y., Ma, D., Liu, M., Chen, Y., Qiao, X., Tan, P. H., Kan, M., Feng, J., Sun, Q., and Liu, Z., Nano Lett. 13, 3870 (2013)Google Scholar
Kawanago, T. and Oda, S., Appl. Phys. Lett. 108, 041605 (2016)Google Scholar
Ishihara, S., Hibino, Y., Sawamoto, N., Suda, K., Ohashi, T., Matsuura, K., Machida, H., Ishikawa, M., Sudoh, H., Wakabayashi, H. and Ogura, A., Jpn. J. Appl. Phys. 55,04EJ07 (2016)Google Scholar
Ishihara, S., Hibino, Y., Sawamoto, N., Suda, K., Ohashi, T., Matsuura, K., Machida, H., Ishikawa, M., Sudoh, H., Wakabayashi, H. and Ogura, A., Jpn. J. Appl. Phys. 55,06GF01 (2016)CrossRefGoogle Scholar
Zhou, L., Xu, K., Zubair, A., Liao, A. D., Fang, W., Ouyang, F., Lee, Y. H., Ueno, K., Saito, R., Palacios, T., Kong, J., Dresselhaus, M. S., J. Am. Chem. Soc. 137, 11892 (2015)Google Scholar
Wang, Z., Wang, W., Yang, Y., Li, W., Feng, L., Zhang, J., Wu, L., and Zeng, G., Int. J. Photoenergy, 956083 (2014)Google Scholar
Firefly version 8. Available at: http://classic.chem.msu.su/gran/firefly/index.html. (accessed 28 May 2016)Google Scholar
Schmidt, M. W., et al. ., J. Comput. Chem. 14, 1347 (1993)Google Scholar
Naylor, C., Parkin, W. M., Ping, J., Gao, Z., Zhou, Y. R., Kim, Y., Streller, F., Carpick, R. W., Reppe, A. M., Drndić, M., Kikkawa, J. M., and Johnson, A. T. C., Nano Lett. 16, 4297 (2016)Google Scholar
Zhou, L., Xu, K., Zubair, A., Liao, A. D., Fang, W., Ouyang, F., Lee, Y. H., Ueno, K., Saito, R., Palacios, T., Kong, J., Dresselhaus, M. S., J. Am. Chem. Soc. 137, 11892 (2015)Google Scholar