Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-13T02:52:42.604Z Has data issue: false hasContentIssue false

Investigation of Perovskite Solar Cells Employing Chemical Vapor Deposited Methylammonium Bismuth Iodide Layers

Published online by Cambridge University Press:  10 July 2018

Dominik Stümmler
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074 Aachen, Germany.
Simon Sanders
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074 Aachen, Germany.
Pascal Pfeiffer
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074 Aachen, Germany.
Noah Wickel
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074 Aachen, Germany.
Gintautas Simkus
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074 Aachen, Germany. AIXTRON SE, Dornkaulstr. 2, 52134 Herzogenrath, Germany.
Michael Heuken
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074 Aachen, Germany. AIXTRON SE, Dornkaulstr. 2, 52134 Herzogenrath, Germany.
Peter K. Baumann
Affiliation:
APEVA SE, Dornkaulstr. 2, 52134 Herzogenrath, Germany.
Andrei Vescan
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074 Aachen, Germany.
Holger Kalisch*
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074 Aachen, Germany.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Although Pb-based perovskite solar cells already achieve power conversion efficiencies (PCE) beyond 20 %, the use of toxic Pb is causing considerable environmental concern. As a consequence, a variety of alternative cations have been investigated to replace Pb2+ in the perovskite structure. Methylammonium bismuth iodide (MA3Bi2I9, MBI) has shown promising results for environmentally benign and chemically stable devices. While the PCE of MBI-based solar cells are still comparably low, structural improvements have been made by using chemical vapor deposition (CVD). CVD allows for the well-controlled formation of coherent and dense MBI layers in contrast to solution-processing. In this work, CVD as a possible MBI fabrication method for efficient and size-scalable solar cells is discussed. The precursors MA iodide (MAI) and Bi iodide (BiI3) are deposited in an alternating deposition process forming the desired MBI perovskite on the heated substrate. Substrate temperatures as well as deposition times of each precursor are varied with the aim of forming coherent and dense MBI layers. Optimized films are further processed to solar cell prototypes and compared with solution-processed reference devices. The results reveal that CVD possesses great potential to enable the manufacture of MBI photovoltaic (PV) devices processed in a solvent-free environment.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

References

Green, M. A., Hishikawa, Y., Dunlop, E. D., Levi, D. H., Hohl-Ebinger, J., and Ho-Baillie, A. W.Y., Prog. Photovolt. Res. Appl. 26 (1), 312 (2018).CrossRefGoogle Scholar
Ávila, J., Momblona, C., Boix, P. P., Sessolo, M., and Bolink, H. J., Joule 1 (3), 431442 (2017).CrossRefGoogle Scholar
Giustino, F. and Snaith, H. J., ACS Energy Lett. 1 (6), 12331240 (2016).CrossRefGoogle Scholar
Hoye, R. L. Z., Brandt, R. E., Osherov, A., Stevanović, V., Stranks, S. D., Wilson, M. W. B., Kim, H., Akey, A. J., Perkins, J. D., Kurchin, R. C., Poindexter, J. R., Wang, E. N., Bawendi, M. G., Bulović, V., and Buonassisi, T., Chemistry 22 (8), 26052610 (2016).CrossRefGoogle Scholar
Hu, H., Dong, B., and Zhang, W., J. Mater. Chem. A 5 (23), 1143611449 (2017).CrossRefGoogle Scholar
Pazoki, M., Johansson, M. B., Zhu, H., Broqvist, P., Edvinsson, T., Boschloo, G., and Johansson, E. M. J., J. Phys. Chem. C 120 (51), 2903929046 (2016).CrossRefGoogle Scholar
Zhang, Z., Li, X., Xia, X., Wang, Z., Huang, Z., Lei, B., and Gao, Y., J. Phys. Chem. Lett. 8 (17), 43004307 (2017).CrossRefGoogle Scholar
Stümmler, D., Sanders, S., Pfeiffer, P., Weingarten, M., Vescan, A., and Kalisch, H., MRS Adv. 2 (21–22), 11891194 (2017).CrossRefGoogle Scholar
Dualeh, A., Gao, P., Seok, S. I., Nazeeruddin, M. K., and Grätzel, M., Chem. Mater. 26 (21), 61606164 (2014).CrossRefGoogle Scholar
Kim, J. H. and Blairs, S., J. Chem. Thermodyn. 22 (8), 803814 (1990).CrossRefGoogle Scholar
Pierson, H. O., Handbook of chemical vapor deposition (CVD). Principles, technology, and applications, 2. ed. (Noyes Publ, Norwich, NY, 1999).Google Scholar
Im, J.-H., Kim, H.-S., and Park, N.-G., APL Mater. 2 (8), 81510 (2014).CrossRefGoogle Scholar
Cuña, A., Aguiar, I., Gancharov, A., Pérez, M., and Fornaro, L., Cryst. Res. Technol. 39 (10), 899905 (2004).CrossRefGoogle Scholar
Lyu, M., Yun, J.-H., Cai, M., Jiao, Y., Bernhardt, P. V., Zhang, M., Wang, Q., Du, A., Wang, H., Liu, G., and Wang, L., Nano Res. 9 (3), 692702 (2016).CrossRefGoogle Scholar