Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T11:09:09.720Z Has data issue: false hasContentIssue false

Investigation of silver behavior in the glass melt and its effect on the IMCC conditions in an industrial-scale furnace during vitrification of HLLW simulants

Published online by Cambridge University Press:  02 March 2020

A. Yu. Abashkin
Affiliation:
Khlopin Radium Institute, 2-i Murinskii av. 28, St. Petersburg, 194021 Russia
I. N. Skrigan*
Affiliation:
Khlopin Radium Institute, 2-i Murinskii av. 28, St. Petersburg, 194021 Russia Saint Petersburg Electrotechnical University «LETI», Prof. Popova st. 5, St. Petersburg, 197376 Russian
E. Yu. Ivanov
Affiliation:
Khlopin Radium Institute, 2-i Murinskii av. 28, St. Petersburg, 194021 Russia
A. O. Pleshakov
Affiliation:
Khlopin Radium Institute, 2-i Murinskii av. 28, St. Petersburg, 194021 Russia
D.B. Lopukh
Affiliation:
Saint Petersburg Electrotechnical University «LETI», Prof. Popova st. 5, St. Petersburg, 197376 Russian
A.V. Vavilov
Affiliation:
Saint Petersburg Electrotechnical University «LETI», Prof. Popova st. 5, St. Petersburg, 197376 Russian
A. P. Martynov
Affiliation:
Saint Petersburg Electrotechnical University «LETI», Prof. Popova st. 5, St. Petersburg, 197376 Russian
Get access

Abstract

The large-scale cold crucible induction melter (CCIM) with productivity of 12 kg/h was created for melting borosilicate glass containing 20 mass. % of high-level liquid wastes (HLLW) simulators. Tests were carried out to study the effect on the CCIM operating parameters during sedimentation of metallic silver, at the content of 3.8 mass. % Ag2O in glass. Post-test analyses of the glass shows the sedimentation of silver in the bottom layers of the molten pool. Experiments have confirmed that the presence of noble metals in the form of undissolved sediments in the bottom layers of furnace leads to a changes in the properties of the melt, the aggravation of its drain conditions, an increase in the thermal conductivity of the skull and heat losses during melting.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Didierlaurent, Régis, Chauvin, Eric, Francois Hollebecque, Jean, et al. World Premiere Industrial Vitrification of High-level Liquid Waste Produced by Uranium/Molybdenum Fuel Reprocessing in La Hague’s Cold Crucible Melter – 14035. WM2014 Conference, March 2-6, Phoenix, Arizona, USA.Google Scholar
Lopukh, D.B.Sovremennye napravlenija I novyerezul’taty issledovanij indukcionnoj plavki v holodnom tigle. [Modern trends and new researching results of induction melting in cold crucible]. Indukcionnij nagrev [Induction heating], 2008, no. 6. pp. 27-37. (in Russian)Google Scholar
Aloy, A.S., Belov, V.Z., Ivanov, E.Y., Brikov, S.I., Trebich, V.D., Ivanov, V.N., Dobrovolskya, V.I., Goryshin, G.A., Nikitin, B.M., Lopukh, D.B., et al. Razvitiye i realizatsiya elektrotekhnologiy dlya konditsionirovaniya radioaktivnykh otkhodov v Rossii [Development and implementation of electrotechnologies for radioactive waste conditioning in Russia]. Indukcionnij nagrev [Induction heating], 2011, no. 16 с. 4-9. (in Russian)Google Scholar
Lebedev, B.B., Stefanovskiy, S.V.Primeneniye tekhnologii IPKhT dlya pererabotki radioaktivnykh otkhodov: opyt MosNPO «RADON». [IMCC technology application for processing of radioactive waste: experience, Radon «RADON»] Voprosy radiatsionnoy bezopasnosti [Radiation safety issues], 2011, vol. 2, pp. 1634. (in Russian)Google Scholar
Dulepov, Yu.N., Vishnev, V.G., Yakovlev, G.I. et. al. Razrabotka oborudovaniya dlya ustanovki otverzhdeniya ZhRO na osnove induktsionnogo plavleniya v kholodnom tigle [Development of equipment for solidification of LW facility on the basis of induction melting in a cold crucible]. Trudy SverdNIIKhimMash [Proceedings of SverdNIIkhimmash], Ekaterinburg, 2010, vol. 17 (81), pp. 202216. (in Russian)Google Scholar
Demine, A.V., Krylova, N.V., Poluektov, P.P. et al. High-level liquid waste solidification using a “cold crucible” induction melter // Mat. Res. Soc. Symp. Proc.–2001.– V. 663.– P. 2733.CrossRefGoogle Scholar
Demin, A.V.. Matyunin, Yu.I.Issledovaniye povedeniya metallov platinovoy gruppy pri osteklovyvanii imitatorov zhidkikh vysokoaktivnykh otkhodov v induktsionnom plavitele s kholodnym tiglem [Investigation of platinum group metals behavior during vitrification of high-level liquid waste simulators in induction melting with cold crucible]. Fizika i khimiya stekla [Physics and chemistry of glass]. 1995, vol. 21, no 6. (in Russian)Google Scholar
Labe, Virginie, Francois Hollebecque, Jean, et al. Incorporation of Noble Metals in High-Level Waste Borosilicate Glass: Focus on Vitrification Process Developments – 14067. WM2014 Conference, March 2 – 6, Phoenix, Arizona, USA.Google Scholar
Aloy, A.S., Nikandrova, M.V.Vyshchelachivaniye borosilikatnykh stekol, soderzhashchikh modelnyye VAO, v rastvorakh perekisi vodoroda kak imitatora produktov radioliza [Leaching of borosilicate glasses containing model VAO in hydrogen peroxide solutions as a simulator of radiolysis products]. Radiokhimiya [Radiochemistry]. 2014, vol. 56, no. 6. pp. 540544. (in Russian)Google Scholar
Krushinov, E.V.. Aniskevich, Yu.N.. Vitol, S.A. et al. Otrabotka tekhnologii odnostadiynogo osteklovyvaniya metodom induktsionnoy plavki v kholodnom tigle pri nizkoy chastote toka [Development of one-stage vitrification technology by induction melting in a cold crucible at low current frequency.]. Trudy MNTK "Bezopasnost. effektivnost i ekonomika atomnoy energetiki” [Proceedings of ISTC "Safety, efficiency and Economics of nuclear energy”], Moscow, September 21–23, 2014, pp. 136-137. (in Russian)Google Scholar
Lopukh, D., Skrigan, I., Vavilov, A., Martynov, A.. “The Research and Development of Innovative Cold Crucible Induction Melter for Vitrification of High-Level Waste Containing Noble Metals,” in Proc. of the 2018 IEEE, ElConRusNW 2018. Saint Petersburg, 2018, p. 481488. DOI: 10.1109/ElConRus.2018.8317136 10.1109/ElConRus.2018.8317136CrossRefGoogle Scholar
Lopukh, D.B., Skrigan, I.N., Vavilov, A.V., Martynov, A.P.. Innovative induction furnace with a cold crucible for vitrification of high-level waste. (Saint Petersburg state electrotechnical university “LETI”, Saint Petersburg, Russia) – PAST «MATERIALS TECHNOLOGY AND NEW MATERIALS» SERIES. 2018. ED. 4(95). P. 4961.Google Scholar
Roach, J.A., Lopukh, D.B., Martynov, A.P., Polevodov, B.S., Chepluk, S.I.. Advanced Modeling of Cold Crucible Induction Melting for Process Control and Optimization. WM2008 Conference, February 24-28, 2008, #8359, Phoenix, AZ.Google Scholar
Lopukh, D.B.Obosnovaniye novoy rossiyskoy kontseptsii postroyeniya ustanovki osteklovyvaniya radioaktivnykh otkhodov metodom induktsionnoy plavki v kholodnykh tiglyakh [Justification of the new Russian construction concept of the radioactive waste vitrification facility by induction melting in cold crucible]. Voprosy radiatsionnoy bezopasnosti [Radiation safety issues], 2009, no 2, pp. 26-32. (in Russian)Google Scholar
Vavilov Anton Valeryevich. Issledovaniye teplovykh i elektricheskikh parametrov plavki oksidov i stekol v induktsionnoy pechi s kholodnym tiglem: dissertatsiya kandidata tekhnicheskikh nauk [Research of thermal and electrical parameters of Oxides and glasses melting in induction furnace with cold crucible: thesis of candidate of technical Sciences]: St. Petersburg, 2011. 226 p. (in Russian)Google Scholar
Appen, A.A.Khimiya stekla [Chemistry of glass]. Leningrad, 1974, 352 p.Google Scholar